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Abstract—This paper consists of an overview on universal  Historically, the information-theoretic approach to predic-
prediction from an information-theoretic perspective. Special tion dates back to Shannon [104], who related prediction to
attention is given to the notion of probability assignment under entropy and proposed a predictive estimate of the entropy

the self-information loss function, which is directly related to f the Enalish | | ired by H Ib sh
the theory of universal data compression. Both the probabilistic of the English language. Inspired by Haggelbarger, annon

setting and the deterministic setting of the universal prediction [105] created later a “mind-reading” machine that predicts
problem are described with emphasis on the analogy and the human decisions. About that time, Kelly [59] showed the

differences between results in the two settings. equivalence between gambling (which, in turn, is definitely a
Index Terms—Bayes envelope, entropy, finite-state machine, form of prediction) and information. Following Cover [17],
linear prediction, loss function, probability assignment, Rissanen [89], [90], and Rissanen and Langdon [93], it is
redundancy-capacity, stochastic complexity, universal coding, well recognized to date that universal prediction is intimately
universal prediction. related to universal lossless source coding. In the last three

decades, starting from the pioneering work of Fittingoff [42]
and Davisson [27], and later Ziv [124], Lempel and Ziv
I. INTRODUCTION [68], [125], [126], Rissanen and Langdon [93], Krichevsky

AN the future of a sequence be predicted based on fi8d Trofimov [63], and others, the theory and practice of
Cpast? If so, how good could this prediction be? Thed#hiversal coding hgve _been gr_eatly ad_vanced. The state-of-
questions are frequently encountered in many applicatioh8&-art knowledge in this area is sufficiently mature to shed
Generally speaking, one may wonder why should the futul‘lght.o.n the problem of universal prediction. Specmcally,
be at all related to the past. Evidently, often there is Su@qedlcnon schemes as wel! as fundamental perfprmance lim-
a relation, and if it is known in advance, then it might b&S (lower bounds), stemming from those of universal cod-
useful for prediction. In reality, however, the knowledge of'd: have been derived. It is the relation between universal
this relation or the underlying model is normally unavailable ¢i°ding and universal prediction that is the main theme of
inaccurate, and this calls for developing methods of univerdRis paper, from the point of view of both algorithms and
prediction. Roughly speaking, a universal predictor is one thgrformance bounds. o .
does not depend on the unknown underlying model and yet-€t us now describe the prediction problem in general.
performs essentially as well as if the model were known f\n observer sequentially receives a sequence of observations
advance. Z1, T2, -+, Ty, --- Over some alphabett’. At each time

This is a survey that describes some of the research workiBgtant, after having seem*~! = (z1, -+, z;_1) but not
universal prediction that has been carried out throughout tHet #+, the observer predicts the next outcomg or more
years in several scientific disciplines such as information th@enerally, makes a decisidh based on the observed past
ory, statistics, machine learning, control theory, and operatiofis - Associated with this prediction or decisidn, and
research. It should be emphasized, however, that there is nd3@ actual outcome;, there is a loss functioi(b;, =) that
tempt to cover comprehensively the entire volume of work thBteasures quality. Depending on the particular setting of the
has been done in this problem area. Rather, the aim is to pdifediction problem, the objective would be to minimize this
out a few of the highlights and the principal methodologie§sStantaneous loss, or its time-average, or the expected value
from the authors’ personal information-theoretic perspectivef either one of these quantities. Obviously, prediction in the

Also, throughout the paper there are a few new results whg¥glinary sense is a specilal case of this, whigre- Z; is an
derivations are given in detail. estimate ofr, based on:!~* andi(by, ) = (&4, x;) iSs some
estimation performance criterion, e.g., the Hamming distance
(if =, is discrete) or the squared errib;, z;) = (x4 — b;)?
(if x¢ is continuous).
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of confidenceor reliability associated with the prediction. Inthend; is well-known to be a linear function aft ! given as
terms of the above described prediction problem, hgres a special case of the causal Wiener filter [119] (see also [86,
a conditional probability assignment of givenz'~!, i.e., a Ch. 14-3]). In the self-information loss cas(qk( |zt=1) =
nonnegative functior, (-|zt~1) that integrates (or sums) to P(-|z*~1) minimizesE{— log b(X,;|X*~! = z!=1)}, namely,
unity for every z*~1. Upon observingz;, the performance the best probability assignment is the true one. The conditional
of 4, is assessed with respect to a suitable loss functi@ayes envelope givent—1, is the (differential) entropy ai,

I, which should decrease monotonically with the probabilitgiven X*—! = z*~1, i.e.,

assigned to the actual outcorbz,|z*~1). A very important B

loss function of this kind is thri;ﬁlf—Jnfom)]ation lossgunction, Ua'™) = —Elog P(X,[X""! =a'™).

which is also referred to as thkg-loss function in the While classical theory (e.g., Wiener prediction theory) as-

machine-learning literature. For every probability asagnmeglgmes that the sourc is known, the more realistic and

b= {b(z), € X} over X’ and everyr € &', this function ;eresting situation occurs whek is either unknown, or

is defined as nonexistent. In the second case, there is no probabilistic data-
(b, z) = —log b(x) (1) generating mechanism and the data are considered arbitrary

and deterministic. Both cases fall into the category of the

where logarithms throughout this paper are taken to the bagfiversal prediction problem, where the former is referred to as

2 unless otherwise specified. For reasons to be discussedhi@probabilistic settingand the latter is called thaeterministic

Section I, the self-information loss function plays a centraletting.Let us now elaborate on these two settings.

role in the literature on prediction and hence also throughout

this survey.

Let us now return to the prediction problem in its generd}- The Probabilistic Setting

form. Quite clearly, solutions to this problem are sought |n the probabilistic setting the objective is normally to

according to the particular assumptions on the data-generatiagimize the expected cumulative loss asymptotically for large

mechanism and on the exact objectives. Classical statistigadimultaneously for any source in a certain class. A universal

decision theory (see, e.g., [35]) assumes that a known pr@Redictor{s¢(z*~1)} does not depend oR, and at the same

abilistic sourceP” generates the data, and so, a reasonakige, keeps the difference between

objective is to minimize the expected loss. The optimum

strategyb; then minimizes the expected loss, given the past, {l En: (e, X, }

l.e., n e}

E{l(b, Xt)|Xt’1:xt’1}:/ dP (z|zt " Hi(b, z) (2) and
X

where random variables are denoted by capital letters. More- U, (P)== Z EUX'™Y
over, under suitable assumptions on stationarity and ergod- "
icity, optimum prediction{b;} in the expected loss sense,
is optimum also in the sénﬁe of minimizing the almost sure = Z {lnf E[i(b, X,)|X* 1)]} 4
asymptotic time-average dfb;, X;) (see, e.g., [4]). Given
X1 = 271, the quantity vanishingly small for large:. The cumulative Bayes envelope
of (4) represents the performance of the optimal predictor
Uat™) = inf / dP (xlet=HI(b, ) tuned toP. For a stationary and ergodic source, the sequence
{U,.(P)},>1 has a limitU(P), referred to as thasymptotic
is referred to as the condition&8layes envelopgiven z'~!. Bayes envelopehat coincides (by the Cesaro theorem [23])
For example, if{ X;} is a binary sourceh, = 2, andi(-, -)  with lim;_,., E{U(X*)}, which in turn exists by nonincreas-
is the Hamming distance, then ing monotonicity. In the self-information loss cadé(P) is
b 0, if P(Ojat—1) > P(1]at1) 3 the e_nt.rop)_/ rate pP, which means th.at the goal_ of universal
P = { 1. otherwise (3) prediction is equivalent to that of universal coding. '
There are essentially three levels of universality according
and the conditional Bayes envelope give! is to the degree of uncertainty regarding the source.
i1 _ i1 i1 Universality with Respect to Indexed Classes of Sources:
U(@"™) = min{P(0]""), P(1}"")}. Suppose that the source is unknown except for being a

For (b, z) = (b— z)? member of a certain indexed clag®y, 6 € A}, where A
is the index set. Most commonly, designates a parameter
by = B(X[ X7 =2t vector of a smooth parametric family, e.g., the families of
and finite-alphabet memoryless sourcéth-order Markov sources,
U(xt™1) = Var {X,|Xt~1 = 21}, M-state sources, ARp) Gaussian sources, but other index sets

(e.g., finite sets) are possible as well. There are two interesting
If, in addition, the underlying sourceé® is known to be issues here. The first is to devise universal prediction schemes
Gaussian (or, if only the class of linear predictors is allowedhat asymptotically attaid/,,(FP,) in the above defined sense
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for everyf € A, and the second is performance bounds beyoueéterministic predictofb.(-)}:>1, there is always the adver-
U,(P,) that apply to any universal predictor. Analogouslgary sequence where at each time instant, is chosen to
to the universal coding terminology, the extra loss beyormdaximize [(b;, x;).
U, (P) will be referred to as theedundancy.Redundancy  The first difficulty is fundamental because it means that
bounds are useful to establish necessary conditions for thighout any limitations on the class of allowed predictors,
existence of universal schemes as well as limitations on tthere is a severe overfitting effect, which tailors a predictor to
rate of convergence. Both are dictated by a certain measthe sequence so strongly, that it becomes, in fact, anticipating
of the richness of the class{P,}. Furthermore, even if and hence completely misses the essence of prediction as a
the redundancy bound does not vanishas— oo, and causal, sequential mechanism. Therefore, one must limit the
hence universal schemes in the above defined sense doatassB of allowed predictors{b,(-)}:>1 in some reasonable
exist, the question of universality can be extended to thafy. For example,B could be the class of predictors that
of achieving this bound. For self-information loss predictiorgre implementable by finite-state machines (FSM's) with
we will explicitly characterize such bounds, and demonstraséates, or Markov-structured predictors of the fdmfy' ) =
achievability by certain universal schemes. b(xs—, -+, ¢—1), @and so on. Such limitations make sense not
Universality with Respect to Very Large Classes of Sourcegnly by virtue of avoiding these trivialities, but also because
Suppose that all we know about the source is that it ey reflect real-life situations of limited resources, like mem-
Markov of an unknown finite order, or that it is stationary andry, computational power, and so on. Stated more formally, for
ergodic, or mixing in a certain sense. For such large classasgiven classB of predictors, we seek a sequential predictor
quantitative characterizations of uniform redundancy rates &' }:>1 that is universal in the sense of being independent of
not exist [60], [106], [107]. Here, one cannot hope for morthe future, and at the same time, its average loss

thanweak universalitya term mentioned and defined in [27], L
which means that universality is attained at a nonuniform _Zz(w )
convergence rate. Sometimes even weak universality cannot gy

be obtained, and in [60] there are necessary and sufficient .
o . . is asymptotically the same as
conditions for the existence of universal schemes.
Hierarchical Universality: In this level, the goal is to de- n
Z l(bt, .Tt)
t=1

vise universal schemes with respect to a sequénce\,, - -- T
of index sets of sources, which may (though not necessarily)
have some structure like nesting, i.4;, C Ay, for every for everyz™. The universal predictor need not be necessarily
positive integet. Perhaps the most common example is wheie B but it must be causal, whereas the reference predictor
for everyk, Ay is the class of alkth-order Markov sources of in B, that minimizes the average loss, may (by definition)
a given alphabet. Here the only prior knowledge that one magpend on the entire sequencg.
have on the source is that its indébelongs taA = (J,~, Ax. The second difficulty mentioned above is alleviated by
The straightforward approach would be to consideas one allowing randomization. In other words, predictions are gener-
big class and to seek universal schemes with respett ithe ated at random according to a certain probability distribution
drawback of this approach, however, is that it is pessimisticat depends on the past. Note that this is different from the
in the sense that the convergence rate towaf{ls,), might above discussed case whésewas a probability assignment,
be very slow, if at all existent, becauge could be a very because now the assigned probability distribution is actually
rich class. In the above Markov example, while edghfalls used for randomization.
within the category of the first level above, the uniarfalls Analogously to the probabilistic case, here we also dis-
in the second level. Nonetheless, it turns out that in certdinguish between three levels of universality, which are now
situations it is possible to achieve redundancy rate thatirsaccordance to the richness of the cld$sThe first level
essentially as small as ¥ were knowna priori. This gives corresponds to an indexed class of predictors which is dual
rise to an elegant compromise between the two former levétsthe above mentioned indexed class of sources. Examples
of universality. It keeps the fast convergence rates of the figh this are parametric classes of predictors, like finite-state
level without sacrificing the generality of the class of sourcesachines with a given number of states, fixed-order Markov
of the second level. predictors, predictors based on neural nets with a given number
of neurons, finite sets of predictors, etc. The second level
corresponds to very large classes like the class of all finite-
In this setting, the observed sequence is not assumedstate predictors (without specifying the number of states),
be randomly drawn by some probability law, but is rather agperating on infinitely long sequences, etc. Finally, the third
individual, deterministic sequence. There are two difficultidevel corresponds to hierarchical universality and parallels that
in defining the universal prediction problem in this contexbf the probabilistic setting. The nature of the reported results
The first is associated with setting the desired goal. Formallg, somewhat similar to that of the probabilistic approach, but
for a given sequence, z», - - -, there is always the perfectthere are several important differences in algorithmic aspects
prediction function defined a&;(z'~!) = x;, and so, the as well as in existence theorems and performance bounds.
prediction problem seemingly boils down to triviality. The The outline of the paper is as follows. Section Il is de-
second difficulty is in the other way around. For a givemoted to the motivation and the justification for the use of

S|

B. The Deterministic Setting
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the self-information loss function as a performance criterighe true probabilistic model. For example {if;} are binary,

in prediction. In Section IIl, the probabilistic setting willthen a good sequendg,(1]|z*~1)} of probabilities assigned

be discussed with a great emphasis on the self-informatitmz, = 1 should satisfy

loss case which is fairly well-understood. In Section IV, the "

deterministic setting will be described with special attention to Z (z¢ — b)) — 0

the similarity and the difference from the probabilistic setting. —y

Section V is devoted to the concept of hierarchical universal?
7

S

in both settings. Finally, Section VI summarizes the pap pmely, the law of I_arge nhumbers. As further discussec_i i_n
2]-[34], other requirements are based on the central limit

theorem, the law of iterated logarithm, behavior of confidence
intervals, and so on.

Interestingly, it turns out that predictive probability as-
II. THE SELF-INFORMATION LOSS FUNCTION signment under the self-information loss criterion can be

. . . . . useful also for the purpose of testing the validity of statis-
We mentioned earlier the self-information loss funcnoacaI models as described above. One reason is that when

and its central role in universal prediction. In this sectior;i certain sourceP govems the data, then it is the true
we discuss some motivations and justifications for using ﬂ}%nditional probability b, (-|z*~1) = P,( 2t-1) that mini
A (- = P( -

loss function as a measure of prediction performance. nﬁzesE{—log b(X,|X*~! = 2*=1)}. In simpler words, the
explained in Section I, predictive probability assignment fo aximum achietvak;Ie assigned pr(')bability is also t’he true

the_ next outcome is more general and more informative th Re (a property shared by very specific loss functions, see
estimating the value of the next outcome, and a reasonable | ). Moreover, by the Shannon—McMillan—Breiman theo-

function should be monotonically decreasing with the assign I, under certain ergodicity assumptions, this is true not
probability of the actual outcome. The self-information Iosg Iy’ in the expected value sense, but aléo almost surely
function, defined in (1), clearly sa_tisfies this requirement, b s by combining the prequential'principle with the Shan-.
it also possesses many other desirable features of fundamer%%i—McMilIan—Breiman theorem, a good probabilistic model

importance. f 1 S
. . . . for the datab,(- must minimize
The first advantage of the self-information loss function is (=)

technical. It is convenient to work with because the logarithmic

function converts joint probability functions, or equivalently,

products of conditional probabilities into cumulative sums of

loss terms. This suits the framework of the general predictig., the average self-information loss.

problem described above. From another perspective, we observe that any sequential
But beyond this technical convenience, there is a deeper gi@ebability assignment mechanism gives rise to a probability

nificance. As is well known, the self-information manifests thgssignment for the entire observation vectsrby

degree of uncertainty, or the amount of information treasured n

in the occurrence of an event. The conditional self-inforr_n.ation Q") = H by (|t

of the future given the past, therefore, reflects the ability to bl

deduce information from the past into the future with minimum ) - _

uncertainty. C_:onversely, any _conS|ster11t probability assignménfor =™
Evidently, prediction under the self-information loss func(i-€- @ that satisfies9(z"") = >, ., Q(«") for all ¢ and

tion and lossless source coding are intimately related. THiS 1), provides a valid sequential probability assignment by

relation stems from the fact thdth, z) = —log b(x) is Q(zt)

the ideal codelengtiof = with respect to a probability func- by(ae|zt ™) = o1y’ (5)

tion b(-). This codelength can be implemented sequentially

within any desired precision using arithmetic coding [88]Therefore, the choice ofb;} in self-information loss predic-

Conversely, any codelength function can be translated irtton is completely equivalent to the choice @f that assigns

a probability assignment rule [90], [93], [109], [117]. Anothemaximum probability toz”, that is, maximum-likelihood

direct application of self-information loss minimization to thestimation.

problem area of prediction, is that of gambling [17], [19], [38]. In our discussion thus far, we focused on motivating the

In this casepb;(-|x*~1) represents the distribution of moneyself-information loss function itself. Yet another motivation

invested in each one of the possible values of the next outcorfa. studying universal prediction in the self-information loss

The self-information loss function then dictates the exponentizgdse is that it sheds light on the universal prediction problem

growth rate of the amount of money with time. for other loss functions as well. Perhaps the most direct way to
The paradigm of predictive probability assignment is aldook at self-information loss prediction is as a mechanism that

the basis of Dawid'prequential principle[31]. However, the generates a probability distribution when the underlying source

motivation of the prequential principle was not in predicis unknown or nonexistent. One plausible approach to the pre-

tion per se but rather the use of probability assignment fodiction problem with a general loss function is then to generate,

testing the validity of statistical models. A good probabilityat each time instant, a prediction that is a functional of the

assignment is one that behaves empirically as expected freaif-information-loss conditional probability assignment. For

along with some open problems and directions for furth
research.

3|

Z —log by(x|a™™)
t=1
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example, in the squared-error loss case, a reasonable predistorstart from the self-information loss criterion, our survey in
would be the conditional mean associated wiff-|z*=1), this part is largely taken from the theory of universal coding.
which hopefully tends to the true conditional probability as

discussed above. As will be seen in the probabilistic setting, Indexed Classes of Sources

this technique is often successful, whereas in the deterministi

setting, some modl_ﬂcatlon IS requw_ed. . . . two common approaches to universal probability assignment
However, there is another way in which seh‘—lnformatloqnOr indexed classes of sources

:OSS fp redtl_ctlon se(rjvtf as ?hyard?tlcke;o predltgtllc) n gnﬁtgr other The Plug-in Approach versus the Mixture Approadhne
0SS functions, and this 1S the notion @ponential WeIgNting. 1,5y, 5 approach to universal prediction with respect to an

In certain situations, minimization of the cumulative 10Sg .\ o4 class of sourcdsPs, 6 € A} is the so-callecblug-in
2.y by, @) corresponds to maximization .Of the eXIOOnem'épproach. According to this approach, at every time instant
ated lossexp(—a Y, {(b, z;) (@ > 0), which in turn can

be treated altoaeth i babilit . t, the index (or the paramete#) is estimated on-line from
e treated altogether as an auxiliary probability assignment..., (e.g., by using the maximum-likelihood estimator), and

In ce_rtain im_portant s_pecial cases (though not always), thg, estimated, = 6,(x*~!) is then used for prediction as if it
solution to this probability assignment problem translates b re the true parameter value, i.e., the conditional probability
as a solution to the original problem. We will also see thg signed tar, is given by P, (a; |a:tl1)

. . . . t 3 t .
usefulngss of the exponential Wg|ght|ng technique as a FOO he plug-in approach mgy work quite well under certain
for deriving lower bounds that are mduceq from correspondlqggulamy conditions. Intuitively, if the estimatd is statisti-
strong lower bounds of the self-information loss case. cally consistent and(x|=~) is continuous inf for every

zt~1 and z;, then the estimated probability assignment may
IIl. THE PROBABILISTIC SETTING converge to the true conditional probability in the probabilistic
We begin with the problem of probability assignment fosense. Nonetheless, this convergence property does not always
the next outcome given the past, under the self-informatitwld (e.g., wher# is the center of a Cauchy density estimated
loss function. As explained above, this problem is completeby the sample mean), and even if it does, the rate of conver-
equivalent to that of finding a probability assignmeptfor gence might be of crucial importance. Moreover, it is not true,
the entire data sequence. in general, that better estimation of the conditional probability
As we mentioned earlier, if the souré@were known, then necessarily yields better self-information loss performance.
clearly, the optimal? that minimizes the above expected selfThe plug-in approach is, in essence, a heuristic approach
information loss would b&) = P, i.e., the prediction induced that lacks a well-substantiated, deep theoretical justification

cl) The Self-Information Loss FunctionMe first describe

by the true underlying source in general.
N 1 1 An alternative approach, henceforth referred to asntine
be(|2"77) = Q([z"7) = P(=" ). ture approach is based on generating convex combinations

. mixtures) of all sources in the cladd, # € A}. Specifi-
The average cumulative loss would then be the entro : . . : d
- ) n : . lly, given a certain nonnegative weight functienfd) that
H,(P) = —E{log P(X™)}. If P is unknown and we wish . : .
to assign a certain probabilit distributio that does not integrates to unity (and hence can be thought of as a prior
g P y on A), we define the mixture probability mass (or density)

depend upon the unknowR, then the extra loss beyond the ;
o function overn-tuples as
entropy is given by

E{—log Q(X") — (=log P(X"))} = D.(P||Q) (6) Qu(z") = /A dw (6)Ps(z™). (7

whereD,,(P[|Q) is thenth-order information divergence (rel-wjith an appropriate choice of the weight function the
ative entropy) betweef* and@. In the corresponding losslessmixture ,,, as we shall see later, turns out to possess certain
compression problend),,(P||@)/n is the coding redundancy, gesirable properties which motivate its definition asversal

i.e., the normalized per-symbol difference between the averaggpability measureThis universal measure then induces a

code length and the entropy. Of course, the minimizations gnceptually simple sequential probability assignment mech-
Dy (P[|Q) for two or more source$P’} at the same time might anism defined by

be contradictory. Thus the problem of universal probability .

assignment is that of finding a good compromigethat is by(ze]2t 1) = Qu(a|zt ™) = Qu(e’) ] (8)
uniformly as “close” as possible, in the information divergence Qu(z'1)

sense, to every in a given class of sources. We shall elaborajg ;g interesting to note [72, Theorem 2] that the above

later on this notion of simultaneous divergence minimizatio'bredictive probability function induced by the mixture of
As explained in Section I, the theory of universality split Ps, 6 € A} can also be represented as a mixture of the con-
into several levels according to the degree of uncertainggional probability functions{ Ps(z:|z*~1), & € A}, where
b) il

regarding the source. We begin with the conceptually simplggk \veighting function is given by thposterior probability
case where the source is known to belong to a given '”dex(%hsity function of¢ given =*~1, i.e.

class of sourced Py, 8 € A}, whered is the index (e.g., a
parameter vector) and is the index set. Since we look at Qu(z|z™h) :/ dw (0]2 1) Py(zy |21 9)
prediction from the viewpoint of probability assignment and A
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where Minimax and Maximin Universality:We have seen (6)
s 1/ (=1 that the excess loss associated with a given probability as-
w(Olz'=1) )Pe( ) (9)2_ o8 /Te(=)  signmentQ while the underlying source i% is given by
/ dw (&) / duw () Py (=) Dn(P2]lQ). The first fundamental justification of the mixture
w (6) P ( w (6)Par (z"77) . : o o
approach (presented in [76]) is the following simple fact: given

(10) an arbitrary probability assignmer}, there exists another
probability assignmern),,, in the convex hull off Py, 8 € A},
and where the last expression manifests the interpretation(tbfat is, a mixture) such thabD, (Fs||Q.) < D,(Fs||Q)
exponential weightingccording to the probability assignmensimultaneously for every € A. This means that when
performance (given biog 1/P(z'~1)) on data seen thus far: seeking a universal probability assignment, there is no loss
points inA that correspond to good performance in the past ané optimality in any reasonable sense, if we confine attention
rewarded exponentially higher weights in prediction of futurmerely to the convex hull of the classP;}. Nonetheless,
outcomes. The exponential weighting is an important concetliis interesting fact does not tell us how to select the weight
We will further elaborate later on it in a broader context diunctionw(-) of the mixture@,,. To this end, we make a few
lower bounds and algorithms for sequential prediction undadditional observations.
more general loss functions in the probabilistic as well as in As mentioned earlier, we wish to find a probability as-
the deterministic setting. signment@ that is independent of the unknow) and yet
For the class of binary memoryless (Bernoulli) sources witjuarantees a certain level of excess loss beyond the minimum
6 = Pr{z; = 0}, the mixture approach, withu(-) being achievable loss haél been knowra priori (i.e., thenth-order
uniform over A = [0, 1], leads to the well-known LaplaceentropyH,.(Fs)). Referring again to (6), this suggests to solve
prediction [66], [67]. Suppose that—! containsty zeros and the following minimax problem:

t; = t— 1 — tg ones, then
inf sup D, (PIQ) =inf sup [ dw(B)D(FQ). (12
Q vcA Q A

1 w
o+1 1 . . .. .
1 /0 61— 6)" db The value of this quantity, after normalizing by is called the
Qulze =02 ") = minimax redundancgnd is denoted byz} in the literature of
/ 6o (1 — @) df universal coding. At first glance, this approach might seem
0

fot1  tot1 somewhat pessimistic because it is a yvorst case approach.
0 0 (11) Fortunately enough, in many cases of interdgf, — 0 as

TE-n+2 t+1 n — oo, which means that the minima® asymptotically

achleves the entropy rate, uniformly rapidly &1 Moreover,

which, in-this case, can be thought of aiso as a plug-i as we shall see shortly, the minimax approach, in the self-
algorithm becauséto + 1)/(¢ + 1) can be interpreted as a. Y, PP

biased version of the maximume-likelihood estimatofoSuch information loss case, is not at all pessimistic evenkif
use %)es not tend to zero. Again, in view of the discussion in the

q Previous paragraph, the minimax-optimgl is a mixture of

- . _ - . . o —_ _ 1 W |
naive maximume-likelihood estimatat, = ¢,/(t — 1) wou the sources in the class.

assign zero probability to the first occurrence af Wwhich, An alternative to the minimax criterion is the maximin

in turn, would result in infinite loss. Also, this bias gives rise
criterion, whose definition has a strong Bayesian flavor that
to the plausible symmetry consideration that in the absence

of any data (ie.fo = ¢ — 1 = 0) one would assign eolualglves rise to the mixture approach from a seemingly different
L0 — - —

probabilities to 0” and “1.” But this would be also the casepOInt of view. Here is the idea: S'.UO@ < A. s unkr)own,

with any estimator of the formd, — (fo + B)/(t + 23), let us postulate some prior probability density functio(®)

B > 0. Indeed, other weight functions (from the DmchleoverA The performance of a given probability assignment

family) yield different bias terms and with slight differences’© uld be then judged with respect o the normalized weighted

in performance (see also [62]). This discussion carries ovRrerage redundancy,,(Fs(|Q), |

to general finite-alphabet memoryless sources [63] (as will be Ro(Q, w) = 1 / dw (6) Dn(Ps]|Q). (13)

discussed later) and to Markov chains [28], [91]. However, it noJa

should be kept in mind that for a general famlly of sourcgs s easy to see that for a givem’ the Q that minimizes

{Ps, 6 € A}, the mixture approach does not necessarily boit, (Q, w) is just the@,, defined in (7), and that the resul-

down to a plug-in algorithm as above, and that the choice gint average redundandy,,(Q.,, w), is exactly the mutual

the weight function might have a much more dramatic impagiformation I,(®; X™) between random variable® and

on performance [76]. In this case, we would like to have some” whose joint probability density function is given by

theoretical guidance regarding the choiceuof (6, z) = w(6)Py(z™). But w is arbitrary and the question
This will be accomplished in the forthcoming subsectiorhat again arises is what would be an “appropriate” choice of

where we establish the theoretical justification of the mixturg? Let us adopt again a worst case approach and use the “least

approach in a fairly strong sense. Interestingly, in the nejgvorable” prior that maximizemfy R, (Q, w), that is, solve
section, it will be motivated also in the deterministic settinghe maximin problem

and for loss functions other than the self-information loss .
function. Sup inf R (Q, w) (14)
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whose value, when normalized by, is referred to as the too rich so that”,, does not vanish as grows without bound,

maximin redundancynd denoted byz_ . It is important to one can no longer hope for uniformly small redundancy rates

note thatR, which is the supremum dof,,(©; X™)/n over [48], [107]. We shall see examples of this later.

all allowablew’s, is given the interpretation of theapacityof Another problem that calls for attention is that the predictor,

the “channel” fromO to X", defined by the class of sourcesor the sequential probability assignment mechanism that we

In this definition, each sourc#,(z™) is thought of as the are proposing here, is not really sequential in the sense that

conditional probability function of the “channel output” giverthe horizonn must be prescribed in advance. The reason

the “channel input'®. We will refer to this channel capacityis that the capacity-achieving priap* depends onn, in

as thecapacity of the clasef sources{F%, # € A} and will general. A possible remedy (both to this and to the problem

denote it byC,,. ThusC,, is identical toR, . of computability) is to seek a fixed prias, independent of,
These notions of minimax and maximin universality werthat achieves capacity at least asymptotically, i.e.,

first defined by Davisson [27] in the context of universal

coding (see also [11], [28], [30], [37], [58], and others).

Several years after Davisson's paper [27] it was Observﬁgrtunately, this is possible in some important examples.

(first by Gallager [45], and then independently by Davisson Finally, we mentioned earlier that the minimax approach is

and Leon-Garcia [29], Ryabko [96], and others) that the . 7' " . .
. S . . . pessimistic in essence, a fact which seems to be of special
minimax and the maximin solutions are equivalent, &, =

) . concern whenRt = C,, does not tend to zero as grows.
R, = C,. Furthermore, the mixturé),,~, wherew* is the kS " 9

i o) <
capacity-achieving priofi.e., I,-(©; X™)/n = C,,), is both The reason is that althougb, (Fs||Quw-) < nC, for all 6,

S L . . . minimaxity guarantees that the lower bound
minimax and maximin optimal. This result is referred to as Y9

the redundancy-capacity theorenf universal coding. D, (P||Q) = nC,, YQ (15)
The capacityC,, therefore, measures the “richness” of the
class of sources. It should be pointed out, though, tiat is valid for one source Py in the class. The maximin point
is not very sensitive to “distances” among the sources in tRé view tells us further that this holds true also in the sense
class, but rather to the effective number of essentially distirf the weighted average db,,(F||Q) over 6 with respect to
sources. For example, the sourPe that generates’s only w*- Still, the optimality of @, is on seemingly somewhat
with probability one is at infinite divergence-distance from th@eak grounds. Nonetheless, a closer inspection reveals that
sourceP, that generates's only. Yet their mixturel P+3 P the right-hand side of (15) is gssentlally a lower bound in a
(in the level ofn-tuples) is within normalized divergence ofmuch stronger sense which will now be discussed.
1/n from both, and so, the capacity dfP;, P} is very AS_trong Converse Theoremt turns out that in the self-_
small. It is a remarkable fact that the theory of universdiformation loss case, there is a remarkable “concentration”
coding is so intimately related to that of channel capacitfhe€nomenon: It is shown in [76] that

lim L,(©; X™)/(nC,) = 1.

Moreover, the importance and significance of the redundancy- Du(P4]|Q) > (1 — e)nC VO (16)
capacity theorem are fairly deep also in the broader context of " - "
probability assignment and prediction. for everye > 0 and forw*-mostvalues off. Here, the term

On the face of it, at this point the problem of universalw*-most” means that the total probability mass of points with
probability assignment, or equivalently, universal predictiothis property, with respect to* (or any asymptotically good
under the self-information loss function with respect to aspproximation ofw*), tends to unity as — oc. This means
indexed class of sources, is fairly well addressed. Nonethelasgt if the right-hand side of (15) is slightly reduced, namely,
there are still several important issues to be considered. multiplied by a factor(1 — ¢), it becomes a lower bound for

The first concern comes from a practical aspect. Explicii*-most values off. Referring again to the uniform upper
evaluation of the proposed minimax/maximin probability assound, this means that*-most sources in the class lie near the
signment is not trivial. First of all, the capacity-achieving priosurface of a “sphere” (in the divergence sense) of radils,

w* is hard to evaluate in general. Furthermore, even whercéntered aty,,-. Considering the fact that we have assumed
can be computed explicitly, the corresponding mixtayg- virtually nothing about the structure of the class of sources,
as well as the induced conditional probabiliti@s (z:|z* 1) this is quite a surprising phenomenon. The roots of this are
might still be hard to compute. This is in contrast to thexplained and discussed in detail in [39] and [76] in relation
plug-in approach, which is relatively easy to implemento the competitive optimality property of the self-information
Nevertheless, we shall return later to the earlier example fohction [20] (see also [61]).

the mixtures of Bernoulli sources, or more generally, finite- There is a technical concern, however: for a class of finite-
alphabet memoryless sources, and see that fortunately enoadihabet sources and any finitethe capacity-achieving prior
some satisfactory approximations are available. must be discrete with support of at modf* points in A

The second technical point has to do with the evaluation pf4, p. 96, Corollary 3]. Strictly speaking, the measusé
capacity, or at least, its asymptotic behavior, which is of crucidien ignores all points outside its support, and the tewi-“
importance. As mentioned earlier, the capacity measures thest sources” is not very meaningful. Again, fortunately
“complexity” or “richness” of the class of sources, afif — enough, in most of the important examples, one can find
0 if and only if uniform redundancy rates are achievable (i.ea, smooth weight functionw, which is independent of:
strong universality). This means that if the class of sourcesdaad asymptotically achieves capacity. This solves both this
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difficulty and the horizon-dependency problem mentiongtie redundancy associated with a mixtuse
earlier. As an alternative remedy, there is another, more A1 n 1(6)]/2
general version of this strong converse result [39], whichD,,(F||Q.) = —— In — +1ln —F——
allows for an arbitrary weight functiom. It tells thatQ,, is 2 2me w(®)
optimal forw-most points inA. But note thatD(F||Q..) may where|I()| is the determinant of the Fisher information ma-
depend ory for a generakw, and so the uniformity property trix of {Fs} (see also Takeuchi and Barron [111] for extensions
might be lost. to more general exponential families). In the maximin setting,

The above result is, in fact, a stronger version of thiae weighted average db, (Fs||Q.,) is then asymptotically
redundancy-capacity theorem, as detailed in [76], and it gengraximized (neglecting thes(1) term) by a priorw that
alizes the well-known strong converse to the universal codimgaximizes the second term above, which is well known as
theorem due to Rissanen [90] for a smooth parametric familgffreys’ prior [7], [16], [57], [92]

+o(1) (A7)

{Ps} whose capacity behaves lik&, ~ (k/2n) log n, where HORE:
% is dimension of the parameter vector. Rissanen, in his award- wy(l) = . (18)
winning paper [90], was the first to show such a strong /II(9’)|1/2 de’

A

converse theorem that applies to most sources at the same

time. The reader is referred to [76] (see also [39]) for detaildd our case|I(#)] is inversely proportional to the square root

discussion on this theorem and its significance in general, fsthe product of all letter probabilities,

well as in the perspective of Rissanen’s work in particular. Let

us now examine a few examples in light of these findings.
Examples: Perhaps the simplest example is the one

where A = {1, 2, ..., N}, namely, there areV sources
P, ---, Py in the class, and the weight functiow is This,inturn, is a special case of the Dirichlet prior [63], whose
represented by a vectofwy, ---, wy) of nonnegative general form is proportional to the product of arbitrary fixed

numbers summing to one. In this case, the above descriyvers of{é;}. Dirichlet mixtures,, and conditional proba-
“concentration” phenomenon becomes even sharper [pgfl]tles derived frlolm them haye easy cloged—form expressions
Theorem 4.5.1], [45] than in the general case becauds well. Generahzmg. the egrller Bern.ouII| example to the size-
D(P||Qu) = nC, for every i for which w! > 0. In Aalphgbet parametn_c_famlly? and using Jeffreys’ prior, we get
other words,w*-all sources lieexactly on the surface of the universal probability assignment

the divergence sphere aroudgl,-. If the sources{P;} are 4 red t;+1/2
easily distinguishable in the sense that one can reliably identify Qu, (@ = jlo'™") = (t—1)+A/2
which one of the sources generated a given vektorthen the
redundancy-capacity of the class is neddy N/n, because
the “channel input’ can be “decoded” from the “channel
output” X™ with small error probability. In this casey*

(19)

wheret; is the number of occurrences of = j, 1 <7 <

t — 1. The uniform prior that leads to the Laplace estimator

discussed earlier, is yet another special case of the Dirichlet

tends to be uniform ovefl, 2, - -, N'} and the best mixture prio_r. It should_be noted _that Jeffreys’ prior as_ymptotica_lly_
U achieves capacity and so, it induces an asymptotically maximin

Q“’ IS _es§ent_|ally a uniform mixture. If the sources are n(f)trobability assignment. Interestingly, as observed in [122], itis
easily distinguishable, then the redundancy-capacity is small Lt asymptotically minimax, and it should be slightly modified

This c?n _be ,t,hought of as a situation where 'Fhe “channel” is hiain minimax optimality. These results extend to more
more “noisy,” or alternatively, that the effective number ofera) parametric families under certain regularity conditions
distinct sources is smaller tha¥. In the extreme case, whereyaiqijed in the above cited papers.
Py =P =.--= Py, we haveC, = 0 as expected, sincCé We gt the main point to be remembered here is that for
have, in fact, only one source in the class. parametric classes, the choiceofis not crucial in terms of

Let us now revisit the Bernoulli example, or more generalljyerformance. This gives rise to the freedom of selecting a prior
the class of memoryless sources with a given finite alphalif§m implementational considerations, i.e., the availability of
of size A. This is obviously a parametric class whose naturg|osed-form expressions for mixtures, namely, conjugate priors
parameterization byd is given by the letter probabilities [35] we have just seen the example of the Dirichlet prior in
with A — 1 degrees of freedom. As mentioned earlief, is  classes of memoryless sources. As another example, consider
discrete in the finite-alphabet case, it depends on the horizgg case wherg P;} is a family of Gaussian memoryless
n, and it is difficult to compute. It turns out that for smoothsgyrces with meaf and varianced. Clearly, @, with respect
parametric families with a bounded parameter sgetike the to a Gaussian priow is Gaussian itself in this case. The idea
one considered here, there is no much sensitivity to the exagtconjugate priors carries over in a natural manner to more
shape ofw (used for@,) as long as it is bounded awaygeneral exponential families.
from zero across\. In fact, any such “nice” prior essentially It should be pointed out that there are other recent exten-
achieves the leading term of the capacity, which‘i'flslr log n. sions [51], [53], [54], [74], [83] of the redundancy-capacity
Differences in performance for different choices of are theory to more abstract classes of sources whose capacities
reflected in higher order terms. Specifically, Clarke and Barrame proportional tok, where the numbef: is attributed a
[15], [16] have derived a very accurate asymptotic formula fonore general notion of dimensionality that is induced by
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the Hellinger distance, the Kullback-Leibler distance, the - [I(b¥, z,) — I(b!, x,)]
Vapnik—Chervonenkis (VC) dimension, etc. Other extensions 1>

to wider classes of sources exhibit different behavior of the < o Z Z Py(a'h) Z
redundancy-capacity [25], [123]. Still, the general underlying t=1gt-t T
information-theoretic principle remains the same; the richness - [Q(z¢|z" 1) 4 |Po(z¢ |zt 1) — Q(z¢ |zt 1)|]
of the class is measured by its Shannon capacity. Other exam- 1Y, z0) — 1(bY, )]

—

—

ples of classes of sources that are not necessarily parametric, L
are given in [39] and [76]. <= Z Z Py(zt1) Z | Ps(ze |t —4)
2) General Loss Functionslt turns out that satisfactory Lo 7
solutions to the universal prediction problem under the self-  _ o, (' =1)|[1(bY, z,) — (B, 2,)]
information loss function, may prove useful for more general Lo
loss functions. Intuitively, under suitable continuity conditions, < = Z Z Py(ztY) Z |Py (|2t ) — Qa1
an optimal predictor with respect t§ based on a good [ o @
estimator of P(z|x*~1), should be close to optimum under < L\/2C, In 2. (23)

the true conditional probability. Generally speaking, since
minimum self-information loss probability assignments are ef; words, the optimum predictor with respect to the universal

senually maX|mum—I|I_<eI|hoc_)d estlma_tes (.Cf' Sect_lon 1, .Wh'c robability assignmeng),,- is within L+/2C,, In 2 close to
are statistically consistent in most situations, this requirement.. . .
is satisfied. optimum simultaneously for ever§ € A. The important

Specifically, in the discrete alphabet case, Rt denote copclusion from this rgsult i§ the following?he exi_stence of
the underlying source and consider the universal probabil piversal predictors with u.nlformly. rapujly _deca_ylng redgn-
assignmentQ = Q.- for which D,(P%||Q) < nC, for ancy rates under the self-information criterion, is a sufficient
all & € A. Using Pinsker’s inequality (see, e.g., [24, Ch. Zondition for the existence of such predictors for general loss
Problem 17]) and the concavity of the square root functiofnctions.
we have (20) shown at the bottom of this page. Now, for a At this point, two comments are in order: first, the above
general loss functiod, let assumption on boundedness lotan be weakened. For ex-

ample, the leftmost side of (23), which can be thought of
by (z' ) = arg min Eo{l(b, X,)| X"t =2} (21) as a generalized divergence betweBn and Q [75], can
often be upper-bounded in terms of the variational distance
where Fy denotes expectation with respectffp, and betweenFP; and . We have adopted, however, the bound-
edness assumption to simplify the exposition. The second
bi(z"!) = arg win Eo{l(b, X)|X""' =2'"'}  (22) comment is that the upper bound of (23) might not be tight
since the true redundancy rate could be faster in certain
whereFo denotes expectation with respecto Assume that situations. For example, minimum mean-square error, fixed-
[ is nonnegative and bounded by some consfapt 0. Then, order, universal linear predictors [26], [90] have redundancy

by the inequality above, we get rates as small a9 (log n/n), whereas the above upper bound
givesO (4/log n/n). The question that arises now is whether
Ee{l z": (e, Xt)} _ Ee{l zn: e Xt)} we can provide a more precise characterization of gchievable
n n o= redundancy rates (tight upper and lower bounds) with respect
12 to general loss functions.
= ST R Y Polan]at) A natural way to handle this question is to take the mini-
t=1 zt-1 @ max—maximin approach similarly to the self-information loss

VG 2 %Dn(PQHQ)
Ly t— t— X (w¢|zt—1)
=\ ;; Py(xt=1) ; Pa(zs|2t-1) log W
1 1 <& 2
= 2ln2 n ;; Py(xt1) chzx | Po(zi]|xt—1) — Qg |2t 1)
> YN R Y IRl - Qe ), (20)

t=1 pt—1 ¢



MERHAV AND FEDER: UNIVERSAL PREDICTION 2133

case. The minimax predictdi, } is the one that minimizes Specifically, let us assume thatis an estimate ofz, the
subtraction operatiomr — b is well-defined, and that the loss

sup Eq 1 Z (b, ) — U, )] functi_on is of the_forrﬂ(_b, x) =_p(a: —b), where the function
6eA n i p(#) is monotonically increasing for > 0, monotonically
Lo decreasing for: < 0, andp(0) = 0. We next derive a lower
= sup / dw (9)E9{E > b, @) = 13, a:t)]}. (24) bound on
WA t=1 n
1 t—1
Unfortunately, there is no known closed-form expression for Ea{n ; pLY = bi(X ))}

the minimax predictor for a general loss function. Nonetheless, . . ) ) )
game-theoretic arguments tell us that sometimes the minimiRich holds forw*-most points inA, and for any predictor
problem is equivalent to the maximin problem. Analogously t§:} that does not depend ah This will extend the lower

the self-information loss case, the maximin problem is defin&@und on universal minimum mean-square error prediction of
as the supremum of Gaussian autoregressive moving average (ARMA) processes

given by Rissanen [90].
We assume thai(-) is sufficiently “steep” in the sense that
Je=2P%) dz < oo for everys > 0, and define the log-moment

. 1¢ Y
%Ef}/,\dw(e)Ee{” Z[l(bu Xe) = 1U(by, X))

i generating function
= inf EQ{% > it X»} - [ a2 @9 o) =—tox [ [ ] a0 @
over all nonnegative V\_/e_ight functions(-)_that integrate to and
(own o be. equivalent for converconcave cost fantions o) = inflsd— ()], d>0. @8)

[95]. In our case, since (25) is always affine and hence concam§e function ¢(d) can be interpreted as the (differential)
in w, the remaining condition is that the set of allowablgntropy associated with the probability function
predictors is convex, and th#y{>;_, I(b;, X;)} is convex

in {b;} for everyd. The latter condition holds, for example, as(z) = e
if b, z) = b—-a|* a2l __Wheres is tuned so thal,p(Z) = d, E, being the expectation
The maximin-optimal predictor is clearly the one that mlnl(—)peration with respect ta,. For a given predictor{b,},

i t—1 _ t—1 .
mmesEQw b, XX = £ } for the worst case choice consider the following probability assignment:
of w, i.e., the one that maximizes

U,(Qu) — /A duw ()T (Pa). (26) Q") = /0 dSV(S)tl;[lqs(wt—bt(wt’l)) (29)

In general, the maximizingw may not agree with the where 1/(-). is a locally bounded away from zero _“prior” on
capacity-achieving priow* that has been defined for the selfs- According to [103],—log (™) can be approximated as
information loss case. Nonetheless, similarly as in (22), thelQilows:

minimax—maximin considerations again justify the approach N ] 1 <& i1

of Bayes-optimal prediction with respect to a mixture of 108 @« ):”';EE S Z plze = be(z777)) = 4(s)
{Ps}. It should be pointed out that in certain cases (e.g., the =1

—sp(2)+(s)

parametric case), prediction performance is not sensitive to +1 log n + R(z™)
the exact choice ofy. 2 .
By definition, vanishingly small minimax redundancy rates 1 _
y ; gy y =n-¢| — Zp(azt—bt(xt 1))
guarantee uniform convergence to the Bayes envelope. How- n

ever, unlike the self-information loss case, for a general loss 1

function, there is not necessarily a “concentration phenom- t3logn + R(z") (30)

enon” wherew-most points of A lie at nearly the same ) )

redundancy level. For example, in the Bernoulli case witfjieréf(z") is a small remainder term. £y R(X™) = O (1)

I(b, =) being the Hamming distance betweérand = [77] for all 9 then following the strong converse of thg self-

there are only two optimal predictors: one predicts alwaydformation loss case (16), we have that #of-most points

“1" and the other predicts alway9$),” according to whether of

Pr{z, = 1} is smaller or larger than/2. Thus it is easy to 1 n 1

find a zero-redundancy predictor for one half of the sources in, Eo{~log Q(X™)} = Eed)(g
n

n

Y (X - bt(th))>

the class, and hence there cannot be a nontrivial lower bound =1

on the redundancy that applies to most sources. Nevertheless, + log O<l>

by using the concept of exponential weighting, in some cases it 2n n

. ; . H,(P

is possible to derive strong lower bounds that holddfemost > (Ps) +(1- 0, (31)

points in A at the same time. n
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for every e > 0 and all sufficiently largern. Since¢(-) is andC,, ~ (p+q+ 1) In n/(2n), and we further obtain
concave([)), interchanging the order between the expectation

operator and the functiop would not decrease the expression | 1 1\ 9 Inn
on the right-hand side of the first line of (31), and so Lo ﬁ; (X =0 (XT7))7 p 207 exp  (L=e)(p+q) n

Inn
1 & >0’ [1+(1—6)(p+f1) —}
¢<Ee{— > (X — bt(Xt_l))}> "
i (34)
H,(FPs) log n 1
z n + (1 =90~ on -0 n (32) This bound has been obtained by Rissanen [90], and it is

known to be tight at least in the autoregressive case [26].
for everye > 0, n sufficiently large, andyv*-mosté € A. Since Another example of a class of Gaussian sources is the one
¢ is monotonically nondecreasing, this gives a lower bound evherez; = 6; + v;, {v;} being zero-mean independent and

identically distributed (i.i.d.) Gaussian noise with powst,

1 & - andé = {6, },>1 is a deterministic signal with power,
EQ{EZp(Xt—bt(X ))}. )
lim sup % Z 62
t=1

t=1

The above lower bound is not always tight. Evidently, nTee
tightness depends on whether the above defipeaso satis-
fies the reverse inequality in (31) for some predictor. Thi .
in turn, is the case whenever the self-information lowe? 0= W < 1. Here again,
bound is achievable by universakedictive coding which 1
models the prediction errar, = =, — b,(z*~!) as a memo- H,(P) = > In (27eo?)
ryless process witly, being the marginal for some > 0.
Referring to the case wher€,, — 0, the above bound for every ¢, but now
is nontrivial if ¢(U(P)) = H(P,), the entropy rate of
P;. When this is the case, our lower bound suggests a C, = W <1+ i) +o(1)
converse to the previous statement on conditions for uni- oW
form redundancy ratesfhe existence of universal predictors
with uniformly rapidly decaying redundancy rates under thée capacity of the band-limited Gaussian channel, which gives
self-information criterion (i.e.,C, — 0), is a necessary
condition for the existence of such predictors for general . - _
loss functions.In summary, under suitable regularity con- lim inf Ee{ Z(Xt = b(X* 1))2}
ditions, there is a uniform redundancy rate for a general =t

gmited to .S and relative bandwidth (normalized By) limited

S|

[, if and only if there is one for the self-information loss > o? exp{(l — )W In <1 + QLW>}
function. Furthermore, even b(l/(FPy)) = H(Fy), there is oW 7

another requirement for the bound to be nontrivial, which — 52 <1+ S ) (35)
is Cp > 102‘5”". Indeed, in the Bernoulli case, where it is oW '

possible to achieve zero redundancy for half of the sources

(as mentioned earlier);,, ~ % and the bound becomesAs for achievability of the above bound, recall that the

meaningless. corresponding universal probability assignment problem is
Let us consider an important example where the abogelved by the mixtured),, with respect to the capacity-

bound is useful. Fop(z) = 22, g, is the zero-mean Gaussiarachieving input which is Gaussian, and therefayg itself

density function with variancel/(2s). Therefore, the log- is Gaussian. When?,, is in turn factored to a product

moment generating function is given by(s) = % In £, and of Q.(x¢|z'~1), each one of these conditional densities is

the differential entropy is)(d) = 5 In (2med). Thus we have again a Gaussian density, whose exponent depends only on
(xy — by(2t71))?, whereb,(-) is a linear predictor, and the

1 & asymptotic variance is given by
Ee{g > (X - bt(th))Q}
t=1 1 2w )
NI wn (1 exp {5 [ mrw) +o?) o
Z—exp{ﬁ—l—(l—c)Cn—M—O(—)}. 27 Jo
27e n 2n n

(33) F(w) being the power spectral density of the capacity-
achieving input process. It can be shown (using techniques
If {Ps} is the class of Gaussian ARMA( ¢) sources with similarly as in [41]) that this Bayesian linear predictor
driving noise of variances?, then H,,(P;) = 5 In(2meo?) asymptotically attains the above bound.
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Another approach to derivation of lower bounds on perfot-— oc. Bailey [6] gave a negative answer to this question (see
mance of universal schemes has been proposed in the broader Ryabko [98, Proposition 3]), but pointed out a positive
context of the multi-armed bandit problem [1], [2], [64]result (Orenstein [85]) to a similar question. It states that for a
[108]. In this line of work, tight upper and lower bounds onwo-sided stationary binary process, it is possible to estimate
redundancy rates have been given for a clagsxdbrmly good the value ofP(Xy = z|X_4, ---, X_;) strongly consistently
schemes in the sense of adapting to the underlying sourast — oo. The proposed estimates are based on finite-order
However, these results are confined to the case whdasea Markov approximations where the order depends on the data

finite set. itself. A similar estimator forP(X, = x|X*~!) turns out to
converge to the true value in the (P) sense, which is weaker
B. Very Large Classes of Sources than the almost sure sense. This estimator has been shown by

So far we have discussed classes of sources where th%&rltl-:!ey [6] to give

exists a uniform redundancy rate, which is given in terms of
the capacityC,, at least in the self-information loss case. The
capacity may or may not tend to zeroas— oo, but even if
it does not, the predictive self-information performance, @&most surely as: — oc. Algoet [3] gave an extension of
the compression ratio of the corresponding universal codetenstein’s results to more general alphabets, which was later
H,(8)/n + C,, might still be less tharlog A (where A simplified by Morvaiet al. [80]. In a more recent paper,
is the alphabet size) for alp € A, provided thatn is Morvai et al. [81] have simplified the estimator (which is
sufficiently large. This means thadbmedegree of compressionbased on empirical averages) for the finite-alphabet case, at
(or nonuniform probability assignment) is still achievable fothe expense of losing the strong consistency property. Their
all sources at the same time, although there is no longer hdséimator is consistent in the self-information sense, i.e., for

% D log[P(Xe| X1 /01 (X X1 — 0

to approach the entropy for evety every stationaryP’
In this section, we focus on much wider classes of sources
. . . P(Xo[ Xy, X, o))
where even this property does no longer exist. These classes lim FEA< log =0 (36)
t—oo by(Xo| X 1, -+, X )

are so rich that, in the self-information loss case, for every
finite » and every predictive probability assignmedf there \hich implies consistency in the!(P) sense.
exists a source in the class such that Another line of research work concentrates on the square-
n error loss function. Since the minimum mean-square-error
E{~log Q(X")} 2 n log A~ o(n). predictor for a known source is the conditional mean

In other words, there is a total “breakdown” in terms of self- b(z'™h) = B{X,|X" = 271}
information loss performance, and similar behavior with other
loss functions. This happens, for instance, with the class of albst of the work in this direction focuses on consistent esti-
stationary and ergodic sources [56], [106], [1L07] the class of aflation of the conditional mean. For Gaussian processes with
finite-order Markov sources (without limiting the order), andinknown covariance function, Davisson [26] has shown that
many other classes that can be represented as infinite uniarigh-order linear predictor, based on empirical covariances
of nested index setd; C Ay C ---. Nonetheless, universalgives asymptotic cumulative mean-square error that behaves
schemes that approach the entropy rate, or more generdike «2(k)(1+% ln n/n), wheres?(k) is the residual error of
the asymptotic Bayes envelope, may still exist if we do natptimal kth-order linear prediction with known covariances.
insist on uniform redundancy rates. In other wordsgakly Thus by letting%k grow sufficiently slowly with time, the
universalschemes [27] are sometimes available. For examptmnditional mean, given the infinite past, can be eventually
the Lempel-Ziv algorithm (and hence also the predictiv@tained. For general stationary processes, Scarpellini [102]
probability assignment that it induces [65]) is weakly universaised sample averages with certain spacing between time
over the class of all stationary and ergodic sources with a giveristants in order to estimaté&’{Xy|Xq, X_1, ---} where
finite alphabet [126]. Necessary and sufficient conditions fér > 0 is a fixed time instant. Modha and Masry [79]
the existence of weak universality can be found in [60].  considered mixing processes and proposed an estimator based
One straightforward observation that we can now make froom slow increase of the prediction memory, using complexity
an analysis similar to that of (23), is that a sufficient conditioregularization methods. The limitation of their method is that it
for the existence of a weakly universal predictor for a generdépends on knowledge of the mixing rate. Meir [73] proposed
(bounded) loss function is the existence of such predictarcomplexity regularization method in the same spirit, where
for probability assignment in the self-information case. Thusr a given complexity, the class of allowable predictors is
the predictive probability assignment with respect to the selfmited by a finite Vapnik—Chervonenkis (VC) dimension.
information loss function is again of crucial importance. In Finally, for a general loss functidn Algoet [4] (see also [5]
view of this fact, the fundamental problem, in this context, i®r the special case of log-optimum investment) has proved
that of estimating conditional probabilities. strong ergodic theorems on the cumulative loss. First, for a
Cover [18] has raised the question whether it is possible known stationary and ergodic source, it is shown that the
produce consistent estimates of conditional probabilities witltrategy that minimizes the conditional meard@t X;) given
|bi (X = z|X'71) — P(X: = 2| X*™1)| — 0 almost surely as the past, is also optimal in the almost sure (@i limit of the
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time-average loss. WheR is unknown, empirical estimatesour regret because the choice of this optimal predictor is the
of the conditional probability are provided. By plugging irbest we could have done in retrospect witlitrhad we known
these estimates instead of the trEe universal schemes arethe entire sequence in advance.
obtained with the same ergodic property as above. Loosely speaking, there is a fairly strong duality between
the probabilistic and the deterministic setting. While in the
former, we make certain assumptions and limitations on the
In the traditional, probabilistic setting of prediction, thatlata sequences that we are likely to encounter, but no prior
was described in the previous section, one assumes that lthetations on the class of prediction algorithms, in the latter,
data are generated by a mechanism that can be characterizésl the other way around. Yet, the deterministic setting is
in statistical terms, such as a memoryless source, Markisequently considered stronger and more appealing, because
source, or more generally, an arbitrary stationary and ergodliee underlying model seems to be better connected to practical
source. As we have seen, the observer estimates on-line eitfirrations: There is no (known) probabilistic mechanism that
explicitly (plug-in approach) or implicitly (mixture approach)generates the data, but on the other hand, our algorithmic
the conditional probability of the next outcome given the paggsources are, after all, limited.
and then uses this estimate for prediction of future outcomesPerhaps one of the facts that shed even more light on this
But when it comes to the deterministic setting of indiduality between the probabilistic and the deterministic setting,
vidual data sequences, the underlying philosophy must isethat quite frequently, the comparison cldasss defined as a
substantially different. There is no longer an assumption obéllection of predictors that are obtained as optimal solutions
an ensemble of sequences generated by an underlying prdba-a certain class of sources in the parallel probabilistic
bilistic mechanism, but rather only one arbitrary, deterministisgtting. For example, fixed predictors, whérgz'~1) is a
individual sequence. What is the best prediction strategy thetnstant independently of'—*, are optimal for memoryless
one can possibly use for this fixed sequence? stationary sources, linear predictors are sufficient for the
We realize that, as stated, this question is completely triviélaussian case, Markov predictors are adequate for Markov
and meaningless. As explained in Section |, formally, for argrocesses, and so on. In these cases, there is a remarkable
sequence, there is a perfect predictor that suffers zero Iskegree of duality and analogy between results obtained in
along this particular sequence. But at the same time, tiiige deterministic setting and those of the corresponding prob-
particular predictor might be extremely bad for many othebilistic setting, notwithstanding the considerable difference
sequences. Evidently, we are over-tailoring a predictor to ohetween the two concepts. Specifically, many of the results
particular sequence, and there is no hope to track the stratofythe individual-sequence setting are completely analogous
of this predictor in the sequential regime that is inherent t0 their probabilistic counterparts, where the probabilistic
the task of prediction. The root of this “overfitting” effect liessource is replaced by the empirical measure extracted from the
in the fact that we allowed, in the above discussion, too muétdividual sequence with respect to certain sufficient statistics
freedom in the choice of the predictor. Loosely speaking, $dat are induced by3. Indeed, the structure of this section is
much freedom that the amount of information treasured in tisémilar to that of the previous section, so as to manifest this
choiceof this predictor is as large as the amount of informatiodnalogy. Nonetheless, there are still certain aspects in which
conveyed by the sequence itself! Roughly speaking, in theie two scenarios diverge from each other, as we shall see later.
situations the algorithm “learns the data by heart” instead of Similarly as in the previous section, our emphasis here is on
performing the task we expect. The unavoidable conclusiontie information-theoretic point of view, and as such, it again
that we must limit the freedom of the choice of predictors t@rgely focuses on the self-information loss function.
a certain class. This limited class of allowable predictors wiA
be henceforth referred to as tltemparison clasgor target
class) and will be denoted bs. In analogy to the indexed class of sources, that was exten-

We would like to have aingle universal predictob: that Sively discussed in the previous section on the probabilistic
competes with the best predictor iR, simultaneouély for setting, there has been considerable attention in the literature

IV. THE DETERMINISTIC SETTING

. Indexed Comparison Classes

every z", in the sense that to the dual comparison classes in the deterministic setting. An
Lo indexed comparison class of predictors is a cl&sthat can
il Z bz, ) be represented ag?, 6 € A}, wheref designates the index
et andA is the index set. Similarly as in Section llI-A, the index
is asymptotically the same as setA could be a finite sefl, ---, N} (N—positive integer),
12 where N may or may not grow withn, a countably infinite
min — Z U(by, x4). set, a continuum, e.g., a compact subset of the real-line or a
Bonid higher dimensional Euclidean space (wlteis a parameter of

The universal predictor need not be necessarilyBirbut it a smooth parametric class), or some combination of these. As
must be the same predictor for every, whereas the choice of was already noted above, in many cagésould be defined as
the reference predictor iB, that minimizes the average lossthe optimum predictor for a certain membgy of an indexed
may depend (by definition) on the entire sequente The class of sources (cf. Section IlI-A).

difference between the performance of the sequential universal) Self-Information LossiIn analogy to Section Ill, let us
predictor and the best predictor i for 2™ actually manifests consider first the self-information loss function, or equiv-
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alently, the probability assignment problem for individuaprobability of correct decision of anV-hypotheses testing
sequences. In other words, our goal is to sequentially assigoblem involving the sources
a universal probability mass function

n R ny _ n bz . t—17 1SSN
Q") = ] belael=*1) 37) (=") E (aelat1) i
t=1

that are induced by the predictors, with a uniform priorion

_ 1 o0 n
to the observed sequengg, so that—-- log Q(z™) would be This is true because

essentially as small as

1 K
1 n _ P.=— max P(z") = ==, (42)
- log max tl:II W (y|2th) N ; ¢ N
for every sequence”, uniformly if possible. This means that if the sourcg#’; } are “far apart” and distin-
Shtarkov [109] has demonstrated that this is indeed possigigishable with high probability, then the minimax redundancy
by minimizing over@Q the quantity is essentiallfog N (compare with the first example in Section

). If A is countably infinite or a continuum, then any finite
1 ) n ) s P -1 subset{f;,i =1, ---, N} of A gives a lower bound o,
e, [_ log Q(z") - <_log e U O )N in the ;bove manner. AA}I grows, P, normally decreases, but
=t (38) the productVP,. can be kept large at least as long /&sis
smaller tharg"“~ so as to “transmit” at a rate below capacity,
Specifically, the minimax-optimal probability assignment igvhich allows for keeping®. close to unity. But the maximum
attained by the normalized maximum-likelihood function  achievable productV P. might be achieved at rates beyond

n capacity.
Q' (z") = b max H W (|2t ) (39) It is easy to show directly thal,, is never smaller than
Kn 6 C,, for the same class of sources or probability assignments

indexed byA. This implies that a necessary condition for the

existence of minimax universality in the deterministic setting

K - Z A ﬁ b (| 2t) (40) is the existence of the parallel property in the dual probabilistic
" ol A ’ setting. In the smooth parametric case b6thandI’,, behave

' like % log n. More precisely (see, e.g., Rissanen [92])

where K,, is a normalization factor, i.e.,

Indeed, it is readily seen that, by definition @f,

]ﬂ} n 1 1/2
1 1 n 1 C’nz—log——i——log/ |[£(6)] d9—|—o<—> (43)
——log Q;(xn) __ - log InaXHb0($t|$t_1) 4+ = log Kn 2n 27e n A n
n n ¢ n

t=1 whereas
(41)

; n 1 ) 1/2 1

and so, the universal probability functiof* essentially Ln=g, logo -+ 10%//\ o)1 d9+o<ﬁ>' (44)

3135 Iggztur:g?;gg iarllstE;g202:1%2?22263;S&tlorisi;sg I%‘;td Ilp{urns_ out, however, that richer indexed classes may exhibit
does not grow exponentially rapidly with. "~ a considerably larger gap b_etween_ these two quantmes (see,

If, for example, {1} is the class of finite-alphabet memory-£-9-» the example of arbitrarily varying sources in [76]).

less probability assignments (i.6%(x:|zt~1) = b¥(z,)) with The main drawba::k of th(=T maxmum—hkehhogd (M!_) prob-

# designating the vector df = A — 1 free letter probabilities, ability 3§S|gnmen()n IS ob\{lously on the practlc_:al side: not_
then it is easy to show (e.g., by using the method of typggly Q" IS hf’”d to compute n general, but more importantly, it
[24]) that K,, grows asymptotically in proportion t0*/2 and Is again honzon-dependent, e, the sequence Iemm_hst_be
thus (38) behaves Iikg’% log n. This in turn is the same prescribed. To alleviate this difficulty, the maximume-likelihood

t—1 : ;
behavior that was obtained for smooth parametric families Ji2xe 11, b:(z:|2"~") can be exponentially approximated by
the probabilistic setting. a mixture using Laplace integration [67]. Specifically, for

The numberl, — n~!log K, is therefore given the the case of stationary memoryless probability assignments,

interpretation of the deterministic analog to the minima?htarlaov [?Qill proPosed,followfjrng K,r ichevsky and Tr(;]f_in;]ov
redundancy-capacity’,,, where the maximization of redun-123l: the Diric et{3, --+, 5) (Jeffreys’ prior) mixture, whic

dancy overd in the probabilistic setting is now replaced by€ads to the purely sequential probability assignment
maximization over all possible sequences Intuitively, T, 1 t(a) + %

is another measure for the richness of the comparison class of be(ze = ala"™) = m (45)
predictors, in addition to the capacity,, of the probabilistic 2

setting. Moreover, it turns out that there are relations betweahere ¢(a) is the number of occurrences of the letterin
these two quantities. To demonstrate this relation betwgen z*~L. We have mentioned earlier, in Section Ill, the family of
and the operational notion of capacity as the maximum relialdequential probability assignments that arise from Dirichlet
transmission rate, we note that whan= {1, ---, N}, the weighting in general. But the interesting property of the
guantity K,, can be interpreted a8 - P. where P, is the Dirichlet-(3, ---, ) (in addition to being Jeffreys’ prior for
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this family), is that it is asymptotically as good as the ML Nonetheless, the motivation for carefully studying this sim-
probability assignment. Specifically, with (-|z*~!) defined ple comparison class is that it is fundamental for exam-
as above ining comparison classes of more sophisticated predictors.
n For example, a first-order Markov predictor, characterized by

max [— log H by (]2t ™1) b (z|zt~1) = b (2|7, 1), can be thought of (in the binary
¥ t=1 case) as a combination of two fixed predictors operating,

ing to all time instants{¢} that follow z;_; = 0, and the
other—wherex;_; = 1. Having made this observation, the
< k log n + Const + o(1) (46) problem then boils down back to that of constant predictors.
2 One example, which is still closely related to the self-

where only the constant here is larger than the one obtairigtPrmation, is that of portfolio selection for optimal invest-
by Q. ment in the stock market [3]-[5], [21]. In this model, the goal

Further refinements and extensions of this result have béerf0 maximize the asymptotic exponential growth rate of the
recently carried out, e.g., in [92] and [121]. Specifically¢apital, where the current investment strategy depends on the
Xie and Barron [121] introduce also the dual notion of thpast. The corresponding loss function, in our framework, is
maximin redundancy (or regret) whose value coincides withen I(b, ) = —log(b*«z), with both b and = being m-
I',, as well, and show that Jeffreys’ mixture is asymptoticallgimensional vectors of nonnegative components, where in
maximin with asymptotically constant regret for sequencége former these components sum to unity. The veator
whose empirical pmf's are internal to the simplex. Similarlyepresents the return per monetary unit in several investment
as in the probabilistic setting, it is not asymptotically minimagpportunities (stocks), whereas the vediccharacterizes the
though because of problematic sequences on the boundarjragtion of the current capital allocated to each stock. Cover
the simplex. Nevertheless, a slight modification of Jeffrey§21] and Cover and Ordentlich [22] have used techniques
mixture (which again, depends om and hence makes it similar to those of the self-information loss described above,
again horizon-dependent), is both asymptotically minimax at@l develop a sequential investment algorithm and related it
maximin. again to universal coding with results of a similar flavor.

Finally, Weinberger, Merhav, and Feder [117] have studiédgain, their universal sequential strategy competes with the
the problem of universal probability assignment for individuddest constant investment strategy. These results can be viewed
sequences under the self-information loss function with resp@ést an extension of the self-information loss because the latter
to the comparison class of all probability assignments that dgeactually a special case where the vectors always all-
implementable by finite-state machines with a fixed number o¢ro except for one component (corresponding to the current
states. There are no such accurate formulas therein regardilghabet letter), which ig.
the higher order redundancy terms. However, it is shown that3) The Sequential-Compound Decision Probléther ex-
theg log » behavior is not only minimax over all sequencesgmples of loss functions are not so closely related to that of
but moreover, it is a tight lower bound fonostsequences of the self-information loss, and consequently, the techniques and
mosttypesdefined with respect to those finite-state probabilitihe results are considerably different. The comparison class of
assignments. This result parallels thealmost everywhere constant strategies for more general loss functions has been
optimality of universal probability assignments in the probestudied in a somewhat more general setting, referred to as the
bilistic setting (cf. Section Il1). In this context, it is interestingsequential-compound decision problemhich was first pre-
to note, as shown in [117], that in contrast to the probabilistiented by Robbins [94] and has been thoroughly investigated
setting, the plug-in approach fails, in general, when it comeslater by many researchers from disciplines of mathematical
individual sequences. We will elaborate on these results furttsatistics, game theory, and control theory (see, e.g., [8],
in Section V in the context of hierarchical comparison classg®], [49], [50], and [112]). Perhaps the most fundamental

2) General Loss FunctionsThe problem of universal findings of the compound sequential decision problem are
sequential prediction or decision-making for individuasummarized in the theory of Bayes decision rules, that includes
sequences under general loss functions, is definitely a mubk notion of Bayes envelopédthat is, the best achievable
wider problem area than that of the special case of probabiligrget performance as a functional of the empirical pmf of the
assignment under the self-information loss function that weequence) and an analysis of its basic properties. This in turn
discussed thus far in this section. In fact, most of the classidas been combined with approachability—excludability theory,
work in this problem area, in various scientific disciplines, habat provides simple necessary and sufficient conditions under
concentrated primarily on the caseadnstantpredictors, i.e., which one player (in our case, the predictor) of a repeated zero-
predictors for which each? yields a certain fixed prediction, sum game can reach a certain performance level (in our case,
regardless of the observed past. For examifigfor a certain the Bayes envelope) for every strategy of the opponent player
value of #, may suggest to predialways “0” as the next (in our case, Nature that chooses an adversary sequénce
outcome of a binary sequence, or, it may always assign aThe sequential compound decision problem is more general
probability of 0.8 for the next outcome beingl:” This is than our setting in the sense that the observer is assumed to
seemingly not a very interesting comparison class becaus®ess only noisy versions of the sequente yet the loss
past information is entirely ignored. function to be minimized is still associated with the clean se-

- <— log max H W (wy|zy 1)

)] respectively, on two subsequencesttt the one correspond-
t=1
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guence (e.g., the expected cumulative loss, or its probabilisticnvergence rates for the special case of the square loss
limit with respect to the ensemble of noise processes). Hanrfanction!(b, x) = (x — b)? under various sets of assumptions.
[49] has taken a game-theoretic approach to develop up@sveral later papers [82], [113] deal with the more general
bounds on the decay rate on the regret, showing a convergecase where the comparison class consists of Markov strategies,
rate of O (n=1/2) in the finite-alphabet, finite-strategy spacevhose importance will be emphasized later.
case, and arate @ (n ! 37, ¢t~) in the continuous case, On-Line Prediction Using Expert AdviceA completely
provided that the loss-minimizing strateyas a functional of different point of view has been taken more recently, primarily
the underlying empirical pmf of™, that is, theBayes response by learning theorists in their studies of a paradigm referred to
satisfies a LipSChitZ condition of ordar> 0. Thus fora = 1, ason-line prediction using expert advi((eee, e.g., []_2], []_3],
which is normally the case, this means a convergence rate[g$], [43], [69], [84], and [115]). In the previously defined
log n/n, similarly to the self-information loss case that weerminology, the basic assumption is that the comparison
have seen above. class consists of finitely many predictdrs - - -, &, referred

One of the essential ideas underlying the analysis teq@y- s experts. There are absolutely no assumptions on any
niques, is the following simple “sandwich” argument (see, €.Gyrycture or relationships among these experts. The goal is

[75]): It is easy to show that to devise a sequential universal prediction algorithm that
" performs essentially as well as the best of these experts along
min 1 Z I(by, z) every individual sequence.
B oni= We have actually examined earlier this scenario in the

context of the self-information loss function and a finite
i.e., the Bayesian envelope, is upper- and lower-bounded jBfex setA — {1,---, N}, where our conclusion was that
the average loss associated with two strategies. The currgyyd necessary minimax price of universality need not exceed
strategy for the upper bound is optimal withihfor the data 1,5 N/p, in the worst case, namely, when the probability
seen thus far* ™, and for the lower bound, itis an (imagined);ssignmentsi correspond to distinguishable sources. Inter-
strategy that is allowed to accessfor this optimization within - gstingly, this behavior essentially continues to take place for
B. Thus the strategy of the lower bound sees merely one Mefgnera| (but sufficiently regular) loss functions. Vovk [115]

outcome than that of the upper bound. When the comparisgnyy | jttiestone and Warmuth [70] proposed independently
class is that of constant strategies, the Bayes envelope depends,

a term proporuongl ta/t. Therefore, uqder the appropriate, o it of this algorithm, there is a remarkable similarity to
smoothness conditions/(= 1 above), the instantaneous losse

f th d | bound diff Iso b it thl%e mixture approach, or, more concretely, the notion of
ot Ih€ upper and lower bound ditter aiso by a quantity %g(ponential weighting that was discussed in Section Il in the
scales proportionally td /¢, which when averaged over thespecial case of the self-information loss

integersl, - - -, n, givesO (logn/n). Afortiori, the dlﬁereqce Here is the idea: ley > 0 be a given constant (to be chosen
between the upper bound and the Bayes envelope, i.e., f[arm]t%r) and consider the weidhted averageofih =0 e
regret, cannot excee@ (logn/n). 9 9 e

In some important special cases, however, the loss function N e
and the Bayes response are discontinuous. This happens, for Z we (i) e (47)
example, in prediction of binary sequences under the criterion =1

of relative frequency of mispredicted outcomes, where thehered: is the prediction of theéth expert at time, andw; (¢)
Bayes response with respect to the class of constant predicisrthe weightassigned to this expert at this time. The weights,
is binary itself and it depends on whether the relative frequengy each time instant, are nonnegative numbers summing to
of zeros is below or above/2. In this case, randomizationunity. Intuitively, we would like to assign higher weights
of the sequential prediction strategy around the discontinuiy experts who were proven better in the past. Therefore, a
point (see, e.g., [40], [99], and [100]) is necessary in ordegasonable thing to do, following (10), is to assign to each
to achieve the target performance for problematic sequeneggpert a weightu,(4) that is proportional to

whose empirical pmf’s visit infinitely often (as — oc) these i1

discontinuity points. The cost of this randomization, however, exp <_77 Z b, x )>

is a considerable slowdown in the rate of convergence towards = T

the Bayes envelope. In the above binary case, for exampl . . ) .
the rate of convergence @ (1/y/7), whereas in the parallel WHere fort = 0 the summation will be defined as zero (i.e.,

probabilistic setting, where such a randomization is not need%'&'form initial weighting). Now, if we are fortunate enough

(cf. Section Ill), it is as fast a® (1/n). that there exists a strate@gysuch that for every:

Van Ryzin [112] has shown that even in the former case - N . .
of smooth loss functions, the convergence rate can be more M) >Ny (i) e ML) (48)
tightly upper-bounded by (log »n/») under certain regularity i=1

conditions on the channel through which the observer receivtbgn it is easy to see that this strategy will serve our purpose.
the noisy measurements. Gilliland [46] further investigatethis is true because the above condition suggests the following
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conceptually simple algorithm: then it is clear that the weighted average of the experts’
0) Initialization: Setwg(é) = 1/N for 1 < ¢ < N and predictions will be a suitable solution. Unfortunately, there are
thent = 1. also other important loss functions (like tlig loss function,
1) Prediction: Choose a predictiob; at timet that satisfies (b, =) = |z —b|) for which ¢; = co. This means that for these
(48). loss functions, the regret does not behave lik€og N/n),
2) Update: Upon receivingz;, update the weight function but rather decays at a slower rate with e.g., like 1/y/n.
according to These cases should be handled separately.

; What makes this algorithm even more interesting is the
wy (1) e~ by, @)

N — 49) fact that it turns out to be minimax-optimal in the sense that
wip1(i) = N (49) . . .
b m) ¢ In N/n is also an asymptotic lower bound on the maximum
D wi(j) e regret. Unfortunately, the weak point of this lower bound is
j=t that this maximum is taken not only over all sequente’s},
3) lIteration: Incrementt and go to 1). but also over all possible sets &f experts! The algorithm is,

It follows immediately from the definition of the algorithmtherefore, asymptotically optimal in an extremely pessimistic

that the exponent of the cumulative loss associated {ifh  Sense, which is of special concern whahis large. What is
satisfies left to be desired then is a stronger bound that depends on the

. LN . relationships among the experts. As an extreme example, if all
" i experts are identical then there is in fact only one expert, not
=P < K ; or, xt)) = N ; P < K ; (i, xt)) N, and we would expect to obtain zero regret. Intuitively, we
N would like the formal number of experf§ to be replaced by
N 1 max exp | —n Z 10, ) some notion of an “effective” number of distinct experts, in
N Pt v analogy and as an extension of the role played by capégity
(50) or by I, in the self-information loss case. To the best of our
knowledge, to date, there are no reported results of this kind
and so in the literature except for Cesa-Bianchi and Lugosi [14] who
‘ 1 characterized the minimax regret along with upper and lower
Z (b}, ) < min Z I(by, z:)+—In N.  (51) bounds for binary sequences and the Hamming loss function,
t=1 Rt " but without any constructive algorithm yet.
Thus the crucial question that remains to be addressed i@nother drawback is associated with the algorithm itself. To
regarding the conditions under which (48) is satisfied. T¢€ this algorithm in practice, one should actually implement
put this question in perspective, first, observe that for tfig Parallel the prediction algorithms proposed byZilexperts,

n n

self-information loss function angl = 1, the functions which might be computationally demanding for lare This
is in contrast to the situation in certain special cases, e.g.,
- i when the experts correspond to all finite-state machines with
exXp <_77 2 1(bt; xt)) a given number of states [38], [40], [75], [126]. In these cases,

L
||M:
[}

there is no explicit implementation of all finite-state machines
are probability measures aftuples. Therefore, their weightedin parallel.
average (mixture) is itself a probability measure and as suchjn spite of these shortcomings, the problem of on-line pre-
can be represented by diction with expert advice has attracted fairly much attention
over the last few years and there are quite a few reported
exp <_77 0o, M)) extensions, modifications, and other variations on the theme
(see, e.g., [10] for a summary of recent work in on-line
N . - ) learning). One extension that would be especially interesting is
for a certain{b} }, which is the probability assignment cor, tie jt with the setting of the compound sequential decision
responding lto the finite mixture. However, in general, thepiom in the sense that the predictor accesses only noisy
function ¢~ may not be closed to convex combinations,pseryations, whereas the loss function remains in terms of the
Fortunately, it is shown that under fairly mild regularity congjaan outcomes. Clearly, the above weighting algorithm, in its
ditions (see [52], [115], and_ [116] fo_r details), it is guar""nteeﬁiresent form, is not directly implementable since there is no
that (48) always holds provided thatis chosen to be at most yq et feedback on the loss associated with past expert advice.
1/¢; and thate; < oo, in which case the regret can be made as
small as¢; In N/n. Many of the important loss functions, like
the self-information loss and the square-error loss, satisfy thesevery Large Comparison Classes
conditions. For example, if the functioeT”(*:*) is concave
(N) in b for everyz (which is the case in linear prediction anqa
squared-error loss under some conditions [110]), namely,

We end this section with a natural analog to the case of very
rge classes of sources in the probabilistic setting, namely,
very large comparison classes of predictors for which there
N ‘ N _ are normally no uniform redundancy rates.
exp [_”l <Z wi ()b 37)] > > wy(i)e”" "™ (52)  In the general level, consider a nested infinite sequence of
i=1 index setsA; C Ay C ---, and their unionA = Up>1 Ag.

=1
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Strictly speaking,A is itself an index set, whose memberdhe idea behind this model is that the state variablespre-
are of the form(k, &), wherek is the smallest integer suchsents the limited information that the machine can “memorize”
thatd € A,. However, the basic property that makeserein from the pastz‘~—! for the purpose of choosing the current
different than the index sets of Section IV-A is that it is so richstrategy. An important special case of a finite-state machine
that for every finite sequeneg*, the minimum cumulative loss with S = A* states is that of &th-order Markov machine (also
over all predictors indexed b is zero. In other words, there iscalled finite-memory machine), whese = (z g, -, Z¢—1).
too much freedom within\, and we are confronting again the Ziv and Lempel described, in their famous paper [126],
undesirable overfitting effect discussed earlier. This happenstarget performance in this spirit in the context of data
in many important examples, e.g., wharconsists of the class compression of individual sequences using finite-state ma-
of all finite-state predictors with an undetermined (but finite)hines. The bedim sup compression ratio obtained by finite-
number of states, or the class of all Markov predictors, state encoders over infinitely long individual sequences (in
even more specifically, all linear predictors with an unspecifigtle above defined sense) has been referred to afinite-
finite order, etc. Quite clearly, in all these situations, there aséate compressibilityof «, and the well-known Lempel-Ziv
enough degrees of freedom to tailor a perfect predictor for aalgorithm (LZ'78) has been shown to achieve the finite-state
finite sequence™, and thus our earlier definition (cf. Sectioncompressibility for every sequence. In a later paper [127], Ziv
IV-A) of the target performanceniny °, I(b:, =) becomes and Lempel extended this definition to compression of two-
meaningless. dimensional arrays (images), where the additional ingredient
We are lead then to the conclusion that we must modifg in defining also a scanning strategy.
the definition of the target performance. The key principle for In [38], results in the same spirit have been obtained for
doing this is to keep an asymptotic regimesofs> k. To fix Sequential gambling over individual sequences, where again
ideas, consider an infinite sequenee- (x1, 2, ---), where the comparison class is that of gambling strategies that are
z™ always designates the firstoutcomes ofc. First, similarly implementable by finite-state machines. Since the gambling

as in Section IV-A, let us define problem is completely analogous to that of data compression,
15 or more precisely, probability assignment under the self-
up(z™) = H/{in - Z 1(by, x1) (53) information loss function (see also [117] discussed in Section

A IV-A), the results therein are largely similar to those of Ziv

where it is assumed that eady, is an index set of the type and Lempel [126]. The formal setting of [38], however, is
discussed in Section IV-A. As for asymptotics, we let fitst somewhat more compliant than [126] to our general definition

grow without bound, and define of cumulative loss minimization, where each loss term depends
ur(x) = limsup ug(z™) (54) ©n one outcomer, onI_y. _ _
n—oo The results of [38] in turn provided the trigger to a later

where thelim sup operation manifests a worst case approactuork [40], where the comparison class of finite-state predictors
since the sequenceis not necessarily ergodic, i.e., the limitfor binary sequences was studied under the Hamming loss
may not exist, one must worry about the worst performanéenction, defined ad(b, z) = 0 if z = b, andi(b, z) = 1
level obtained infinitely often along. Finally, we define our otherwise. In other words, in this cadg,= f(s:) is simply

target performance as an estimate of the value of the next outcomg and the
wx) = lim up(z) (55) performance measure is the relative freque.ncy.of pregiiction
k—o0 errors. Analogously to [126], the quantityfzx), in this special

where now the limit clearly exists sincéux(x)}i>1 iS @ case, is called théinite-state predictabilityof . Similarly,
monotonically nonincreasing sequence whose elements watgen A, is further confined to the class &th-order Markov
obtained from minimizations over increasing sets of predictofsredictors, then the correspondingly definge) is called the
Since the limitn — oo is taken first, the asymptotic regimeMarkov predictabilityof z. There are two main conclusions
here indeed meets the above mentioned requirement thainted out in [40].
n >> k. The problem is now to devise a universal prediction The first is that the finite-state predictability and the Markov
algorithm {b} }+>1 that asymptotically achieves(x). predictability are always equivalent, which means that it is
One of the most popular applications of this general scenasofficient to confine attention to Markov predictors in order
is the one where\ consists of all strategies that are impleto achieve the finite-state predictability. It is worthwhile to
mentable by finite-state machines, which means that Aach note that in the probabilistic setting, such a result would have
S =1, 2, -, corresponds to the class of finite-state machinégen expected under certain mixing conditions because the
with no more thanS states. Specifically, each member/o§ effect of the remote past fades away as time evolves, and only
is defined by two functiong andg. The functiong, referred to the immediate past (that is stored as the state of a Markov
as thenext-state functiondescribes the evolution of the statepredictor) should be essential. Yet, when it comes to individual
of the machines; € {1, ---, k}, according to the recursion sequences this finding is not at all trivial since the sequence
sp = g(Tr1, S_1), t=1,2, - (56) is arb@trary and there is no paraII.eI assumption on mixing
or fading memory. The proof of this result stems from pure
information-theoretic considerations.
The second conclusion, which is largely based on the first
by = f(st). (57) one, is on the algorithmic side. It turns out that a prediction

where the initial stateg is fixed. The functionf describes the
strategyb, at timet¢, which depends only or, by
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strategy that corresponds to probability assignments basedirrelatively small indexed (parametric) classes, the above
the incremental parsing procedure of the LZ algorithm (seesult establishes a parallel duality between the very large class
also [65] and [114]) asymptotically achieves the finite-statef stationary and ergodic sources and the very large class of
predictability. The incremental parsing procedure sequentiafinite-state predictors or Markov predictors.

parses a sequence into distinct phrases, where each new phrase
is the shortest string that is not identical to any previously
parsed phrase. The reason is that the incremental parsing
procedure works like a Markov predictor of time-varying So far we have focused on two substantially different
order k(t), where in the long runk(t) is very large most situations of universal prediction, both of which take place
of the time because the phrases become longer and londerthe probabilistic setting as well as in the deterministic
Consequently, the Markov predictability, and hence also t&étting: Universality with respect to an indexed clasghich
finite-state predictability, are eventually attained. But the deéprelatively “small,” as opposed to universality with respect to
point here lies in the simple fact that the incremental parsiggvery large class, where no uniform redundancy rates exist.
algorithm, which was originally developed as a buildinghese two extreme situations reflect the interplay between
block of a compression algorithm, serves also as the engiié conflicting goals, namely, fast decay of redundancy rates
of a probability-assignment mechanism, which is useful f@ the one hand, and universality with respect to classes as
prediction. wide and general as possible, on the other. For example, the

This gives rise to the idea that this probability assignmehempel-Ziv algorithm for data compression (or for predictive
induces a universal probability measure in the context pfobability assignment) is universal for all stationary and
individual sequences. Loosely speaking, it means that tBegodic sources, but when a memoryless source is encountered,
universal probability measure is proportional 20 (=")  this algorithm gives a redundancy rate that might be much
where LZ(z") is the LZ codeword length fog™ [38], [65]. slower than that of a universal scheme which is tailored to the
This in turn can be thought of as an extension of Shtarkov#ass of memoryless sources; see [71], [87], and [101].

ML probability assignment becauge“%=") is well known Our basic assumption throughout this section is that the
[87] to be an upper bound (within vanishingly small terms) dfrge classA of sources (in the probabilistic setting) or
maxp P(x"), where the maximum is taken over all finite-stat@redictors (in the deterministic setting) can be represented
sources with a fixed number of states. as a countable union of a sequence of index $&ts}i>1,

The problem of [40] was later extended [75] in severa¥hich may, but not necessarily, have a certain structure, such
directions simultaneously: the alphabet of and the loss as nestednesa; C A C ---. In the probabilistic setting,
function were assumed to be more general. Also, classespgfhaps the first example that naturally comes into one’s mind
predictors other than that of deterministic finite-state predits where each;, is the class of discretéth-order Markov
tors were considered, e.g., randomized finite-state predictéggirces, and hence the unidnis the large class of all finite-
(where the next-state function is randomized), families &der Markov sources. Furthermore, in the finite-alphabet case,
linear predictors, etc. Many of the results of [40] turn ouf we slightly extend this class and take its “closure” with
to carry over to this more general case. respect to the information divergence “distance” measure, it

Finally, one additional result of [75, Theorem 3] (seeyould include the class of all stationary sources. This is
also [126]) relates the individual-sequence setting baélecause every stationary source can be approximated, in the
to the probabilistic setting. It tells us that under suitabldivergence sense, by a sequence of Markov sources of growing
regularity conditions, for a stationary and ergodic proce&sder [44, Theorem 3.5.1, p. 57], [47, Theorem 2.6.2, p. 52]. A
o, X_1, Xo, X1, - -, the quantityu(X;, Xo, ---), defined few other examples of hierarchical probabilistic models are the
with respect to finite-state or Markov predictors, agreéQHOWingZi) finite-state sources with deterministic/randomized
almost surely with the probabilistic performance measufext-state functions, ii) tree sources (FSMX), iii) noisy ver-
inf, E{I(b, Xo)|X_1, X_,, ---}. One special case of thissions of signals that are representable by countable families of
result [126] is that the finite-state compressibility is almogtasis functions, iv) arbitrarily varying sources [76], v) sources
surely equal to the entropy rate of a stationary and ergodiith countable alphabets (referred to as sequences of classes of
source. Another important example corresponds to the c@@wing alphabets), and vi) piecewise-stationary memoryless
where A;, is the class of all linear predictors of ordér sources. Most of these examples have dual comparison classes
and henceu(z) is the linear predictability. In the stationary in the deterministic setting.
and ergodic case, the above cited result suggests that withh view of the discussion in the above two paragraphs, a
probability one,u(Xy, X», ---) coincides with the variance natural question that arises, at this point, is the following: can
of the innovation process (that is, the residual linear predictiefe devise a universal predictor that enjoys both the benefits

V. HIERARCHICAL UNIVERSALITY

error) given by of a small indexed class and a large class? In other words,
o we would like to have, if possible, a universal predictor with

e =exp [i / In g(ejw) dw} respect to the large class, but with the additional property that it

27 Jo also performs essentially as well as the best universal predictor

where S(e/~) is the power spectral density of the process. . _ . _ .
While the duality between certain classes of sources and Since this refers to both the probabilistic and the deterministic setting, the
le uality W ! u ‘Qﬁ"n “class” here corresponds both to a class of sources in the probabilistic

corresponding classes of predictors was quite straightforwakgting, and a comparison class of predictors in the deterministic setting.
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within every given indexed subclads, of A. In the probabilis- where the left-most side corresponds to the performance of
tic setting, this means that if we are so fortunate that the soutbe mixture approach and the right-most side corresponds to
happens to be a member of a relatively small indexed clage performance of the two-part scheme with an optimum
(e.g., amemoryless source), then the redundancy, or the regrékture within each class. The message here is that for every
would be essentially the same as that of the best univerialividual sequengehe mixture approach is no worse than the
predictor for this smaller class. In the analog deterministigvo-part approach. In [117] this point is further explored and
setting, we would like the universal predictor of this largeleveloped for several examples of hierarchical classes (finite-
class to behave similarly as the best universal predictor wittstate machines and others) in view of the fact that the first
a certain indexed comparison subclass. Note that the abd®®n of the right-most side above is also a lower bound for
question is meaningful even X is merely a finite (rather than “most” sequences in a fairly strong sense (cf. Section Il). Of
a countably infinite) union of A }x>1. The reason is that the course, the last chain of inequalities continues to hold after
uniform redundancy rate ¢, that is, the redundancy-capacity{aking expectations in the probabilistic setting.
denoted byC,,(A) in the self-information loss case, might still It turns out though, that in the probabilistic setting the
be larger than that of any subs@t(A). Therefore, even in Mixture approach is not only no worse than the two-part
this case, treating\ just as one big class might not be théPProach, but moreover, it is an optimal approach in a much
best thing to do. sharper and deeper sense. As an extension to the result of
In the probabilistic setting, Ryabko [97] was the first tgv-@lmost everywhere optimality o)., (cf. Section II), the
address this interesting question for the above describ@fowing holds for hierarchies of classes [39, Theorem 3]: the
nested sequence of classes of Markov sources, and for i@-Stage mixture with arbitrary weight functiofsv;(-)}i>1
self-information loss (universal coding). Generally speakin{/ithin the classes, and = {m;}i>,, m = 271®, over
Ryabko's idea is to apply the following conceptually simpld€ positive integers, smulta_neously minimizes in essence
two-part code, referred to astaice-universalcode. The first "edundancy for;-most points inA; of 7-most classegA; }.

part of the code is a codeword for an integerhose length If, in addition, w; = w} is the capacity-achieving prior for all

is L(i) = logi + O (log log i), and the second part is al then this minimum redundancy can be decomposed into a

universal code with respect t;, where: is chosen so as to sgm. of two terms,.the first of which i;.(Ax), thg capacity
minimize the total codeword length. Clearly, this code attaiﬁ'g'th'n the underlying class, and th? second is an extra_
redundancy of re_dundancy term that reflects the additional f:ost of universality
with respect to the unknowi The latter term is always upper-
min(Cn(Aq) + L(2)/n] (58) bounded by log 1/m, = L(k)/n. However, if we further
assume that the classes are “easily distinguishable” in the sense
that there exists a good (model order) estimator fowith
small average error probability [39, Theorem 4], thefk)/»
is an asymptotically tight bound. This means that in the case
t%fedistinguishable classes;, (Ax) + L(k)/n is the optimal
performance even at the level of the higher order té&i) /»,

which obviously never exceed§,,(Ax) + L(k)/n for the
true value ofk. Since C,,(Ay) behaves likeO (log n/n) in
the Markov case, the additionél (1/») term does not affect
the rate of convergence within eadh. Thus although there
cannot be uniform redundancy rates simultaneously over

entire class of Markov sources there is still asymptotically which might be considerably larger for large However, if

optimal behavior within evena,. A .
. . . the classes are not easily distinguishable, the mixture approach
An alternative to this two-part code, which cannot be.
. L . . ields a smaller second-order redundancy term whereas the
transformed easily into a prediction scheme, is the mixtufe . . .
Wo-part coding approach continues to gi¥ék)/n. Some

approach. Specifically, for the problem of prediction with . " . . . ; )
self-information loss, the suggested solution is based On%wdehnes regarding the choice of(or, equivalently{L(i)})

. . ) otk given in [39]. It should be noted that for any monotone
probability assignment formed by two-stage mixture, f'rﬂonincreasing sequence of probabilities, < 1/i for all

within eachAy, and then over the integefs=1, 2, --- [98]. namely, L(i) > log 4, and soC, (Ay) +_(10g k)/n is

The first observat|o_n Is that the m|?<ture approach, with alolor8|'Jtimum redunda_ncy in the distinguishable case, as it can be
priately chosen weight functions, is no worse than the aboyg, mnitically attained by a universal code for the integers.
two-part scheme. To see this, let us assume {Hdt)}i>1  From the viewpoint of sequential predictive probability as-
satisfy Kraft's inequality with equality (otherwise, they can b‘%ignment, however, both the two-part method and the method

improved), and consider the two-stage mixture of mixtures are not directly implementable because in the
Q(z") = Z o—L (i) / dw? (0)Po(z™) :‘ormer, trle minimizing depends on the entice®, ar_ld in the
= A atter, {w;} may depend om. A possible alternative to the
— L) N nonsequential minimization overcould be on-line estimation
= Z 2 Quy (") (59 ofiand plug-in. An algorithm in this spirit has been proposed
= by Weinberger, Rissanen, and Feder [118] for hierarchies of
wherew; is the capacity-achieving prior of;. Then tree sources in the probabilistic setting, where the estimator of
o " < o —1G) " ¢ (which is associated the context, in this case) was based
log Q(2") < —log 1?;‘5‘(2 Qu; (2")) on algorithm Context. Fortunately, the probability of error
= min[—log Qu: (") + L(4)] (60) In estimating: decays sufficiently rapidly, so as to leave
i21 ’ the leading redundancy term unaffected. In the deterministic
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setting, however, it can be shown [117] that the method bas€de probability assignment attained by the mixture does not
on the plug-in estimate of does not work, i.e., there arecorrespond directly to a universal predictor, but fortunately,
sequences for which the resulting “redundancy” is higher thaoch correspondence can be made for a certain range of
achieved when the class; is known in advance. values of the predicted sequence. Thus by a proper choice
The mixture approach, however, is useful in both thef prior, the predictor can be scaled to any finite range of
probabilistic setting and the deterministic setting, giving ufie sequence values. In addition, the mixture over the model
yet another reason to prefer it. To overcome the probleonder is performed in a computationally efficient way, since
mentioned above, namely, the fact that the weights of tlsing lattice filters, all possible linear predictors with model
mixture over the index depend on the horizon, we use fixedorder up to some largest ordéd can be weighted in an
weight functions. Fortunately, as mentioned in Section I, iefficient recursive procedure whose complexity is not larger
many cases; are replaceable by mixture weights that do nahan that for a conventional linear predictor of the model
depend o and yet asymptotically achieve capacity. order M. It was also noted, following [75], that a plug-in
At this point it is necessary to address a major practicastimator of the parameter (resulting from the recursive least
concern: is it computationally feasible to implement the twesquares (RLS) algorithm) leads to universal prediction albeit
stage mixture probability assignment? More specifically, wat a slower rate than the mixture approach. The resulting
have seen (Sections Il and 1V) that in some importantiversal linear predictor has been implemented and tested
examples the mixture within a single indexed class is eas#yperimentally in several practical communication and signal
implementable, but is it still reasonably easy to implemeptrocessing problems [110].
the second-stage mixture among (possibly infinitely) many
classes. Unfortunately, there is no positive answer to this
question in the general level. Nonetheless, Willems, Shtarkov, VI.  CONCLUSION AND FUTURE DIRECTIONS
and Tjalkens, in their award-winning paper [120] provided a In this paper, an attempt has been made to provide an
positive answer to this question for finite hierarchies of classggerview on the current state-of-the-art in the problem area of
of tree sources, using an efficient recursive method, referrediigiversal prediction. As explained in Section I, it is definitely
as context-tree weightingTheir method is optimal for every not, and not meant to be, a full encyclopedic survey of all
individual sequence in the sense of (60). For hierarchies sifientific work that has ever been done on this topic. The aim
countably infinitely many classes, however, the implemeias to mention several important concepts from the authors’
tation issue is still unresolved. In [117] several examplgsoint of view. Let us summarize some of these concepts very
are demonstrated where the countably infinite mixture ovefiefly.
i actually collapses to a finite one. This happens becausenNe have seen that the problem of universal prediction has
the contributions of mixtures corresponding to albeyond been studied extensively both in the probabilistic and the
a certain thresholdiy turn out to be identical and thendeterministic setting. There are many common features shared
can be merged with the combined weight,., ;. The by these two settings. First of all, in both of them the self-
problem is, though, thaty normally grows withn, and so, information loss case plays a central role, which stems from
the computational burden of computirig mixtures at every several facts. i) It is an important loss function on its own
time instant becomes explosively large as time elapses. right for reasons that were explained in Section Il. One of the
So far, we have discussed hierarchical universal predictiofain reasons is that we view the prediction problem as one
solely under the self-information loss function. What can hef probability assignment, and as such, the self-information
said about other loss functions? Apparently, we can deduess function arises in a very natural manner. ii) In the self-
from the self-information loss function to other loss functiontformation loss case the theory is fairly mature and well
in the same way that this has been done in Sections Il andderstood. iii) Results (both lower bounds and algorithms) for
IV. Beyond that, we are not aware of much reported wordther loss functions can be obtained from the self-information
on this topic. We will mention only two directions that havdoss function. The second common feature of the proba-
been pursued explicitly. The first one is by Helmbold anbilistic and the deterministic settings is in the large degree
Schapire [55], who have combined the exponential weighting parallelism between the theories of universal prediction:
mechanism of on-line prediction using expert advice [11%iniversality with respect to small indexed classes, universality
(with respect to the absolute error loss function) together withith respect to very large classes, and hierarchical universality,
the context-tree weighting algorithm of Willems, Shtarkowvhich actually bridges them. There is also a remarkable degree
and Tjalkens [120] for competing with the best pruning odf analogy between the quantitative results obtained in both
a decision tree. settings in some cases. One of the fundamental connections is
Other recent work is in hierarchical linear prediction fothat for stationary and ergodic sequences, the best attainable
individual sequences under the square error loss functiparformance level of the deterministic definition agrees almost
[41], [110]. In these papers, the linear prediction problem &urely with its probabilistic counterpart.
transformed into a Gaussian sequential probability assignmenHowever, there are a few differences as well: sometimes
problem. The universal assignment is obtained by a two-stag@imax redundancy rates of the deterministic setting are
mixture, over the linear prediction coefficients and over thdifferent from those of the probabilistic setting. The plug-in
model order. For the mixture over the parameters, a Gaussépproach for predictive probability assignment works well in
prior is used, and the mixture can be evaluated analyticallpany instances of the probabilistic setting, but it is normally
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not a good approach in the deterministic setting. The minimgee] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. E.
redundancy of the deterministic setting is different from that
of the probabilistic setting. Randomization is sometimes negx
essary in the deterministic setting, but not in the probabilistic

setting.
Perhaps one of the interesting messages is that although

term “probability assignment” originally comes from the probfi5]
abilistic world, it is still meaningful in the pure deterministic
setting as well. This fact is far from being trivial. Moreovery;g)
there are very efficient algorithmic tools for obtaining good
probability assignments, and one of them is the incremenﬁd,]
parsing procedure of the Lempel-Ziv algorithm.

We also see a few more theoretical problems which might
be interesting to consider for future research. Some of the#f!
have been mentioned in the body of the paper.

Some of these challenges have defied the best efforts of magy

Develop a more solid and general theory of univers&®!
prediction for general loss functions, in parallel and ex-
tension of the theory of the self-information loss functioni20]
Derive tighter and stronger lower bounds for gener
loss functions both in the probabilistic setting and in th
deterministic setting. For example, in the framework oR2]
prediction using expert advice, take into account relations
among the experts rather than assuming the worst set[g
experts.

Extend results on universal prediction with respect to tHé*
comparison class of finite-state machines to the case nojsy
observations.

Impose limitations on the resources of the universzf%
sequential predictor. For example, if the comparison class
is that of finite-state predictors, how many states should
the universal predictor have to guarantee redundan 2)3
below a certain level? [28]

1

researchers so far. Others are yet to be explored.
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